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Abstract of the Thesis
Unmanned Aerial Vehicle Model and Simulation
by

Laurence Helen Mutuel
Master of Science in Aerospace Engineering
University of California, Los Angeles, 1996

Professor Jason L. Speyer, Chair

Ultra-light high aspect ratio solar powered aircrafts flying in formation provide
a good platform for surveillance or telecommunication relays as redundancy is
inherent to the flock and autonomy to solar energy. The preliminary study on
the feasibility of such a project lies in the simulation and flight test of a prototype.
The craft is first modeled as a rigid body with accurate fully nonlinear dynamics
and aerodynamical data. The elastic behavior of the structure entails flutter
analysis and generation of corrective elastic stability derivatives. Propulsion
and actuation models complete the aircraft simulation. Flying qualities in the
presence of atmospheric turbulence are assessed with a wind gust model. The
simulation provides a useful tool for pilot training and appreciation of the aircraft
open loop behavior, so that necessary modifications of the prototype are performed
before flight test. The design of the autopilot for the long term autonomous flight
is shown. The configuration combines a way point guidance, a Kalman filter
and a linear quadratic regulator. The closed loop simulation demonstrates the

feasibility of high altitude climb and the operational state of the guidance.



CHAPTER 1

Project Context

The principal motivation for this thesis is to prove the feasibility of formation
flight at high altitude with ultra light solar powered aircrafts. Therefore the study

of flight performance for a single aircraft is a prior requirement.

1.1 The Formation Flight Problem

Recent research programs have developed unmanned aircrafts designed to fly at
high altitude for extended periods of time using solar power. The types of missions
covered by such vehicles would range from reconnaissance to relay stations for
telecommunications. Formation flight presents advantages for instrumentation
distribution, redundancy within the formation and failure management: sensors

can be distributed between aircrafts to obtain wide aperture or, a failure in



one aircraft does not entail a mission cancellation but a single recall for repairs.
These mission requirements create multiple constraints, making optimization a
major concept: the aircrafts must stay aloft for extended periods of time using
solar power only. Therefore, as much energy as possible must be stored during
the day to allow operation overnight. Obvious solutions begin with trajectory
optimization and state of the art technology for reducing the aircraft weight.
Composite material are therefore dominant in the craft structure. As for the
avionics, the weight constraint makes redundancy a problematic aggravating
solution to safety issues. In addition to energy and weight optimization, improved

aerodynamics can boost the aircraft overall performance.

Indeed the aerodynamic efficiency of an aircraft can be increased with the
aircraft aspect ratio, that is with longer wings compared to their width. The
result is that the lift on the wing increases while the induced drag decreases,
so that the power required to stay aloft is minimized. However, a vehicle with
such a long and slender wing would be unreasonably flexible and fragile. The
alternative is to obtain the same high aspect ratio by designing a formation
of smaller aircrafts. indeed, if n aircrafts with aspect ratio A fly wing-tip to
wing-tip, the resultant configuration will have an aspect ratio of nA. However,
having n aircrafts flying wing-tip to wing-tip may cause obvious problems. The
solution comes from the Stagger Theorem of Munk: in the case of inviscid flow,
the induced drag is independent from fore-aft separations between the aircrafts.
Therefore a V' formation or staggered line can be preferred. Even if the drag
reduction benefits will be smaller in viscous flow, the prediction in inviscid flow
seems already promising. The strategy is that each craft benefits from the wake
emanating from the craft in front, that is each aircraft uses the lift generated by

the wake in addition to its own , therefore decreasing the power consumption.



Then, the main concern is the control of the staggered line of aircrafts. Finally,
the basic performance analysis of the formation first requires to focus on a single

aircraft.

1.2 Focus of the Thesis

The performance analysis starts with the single aircraft open loop dynamics.
However, this concerns only the rigid body characteristics whereas the lightly
loaded structure could also play an important role. indeed, the flexural behavior
of the wings can induce a loss of control power and the reduction of the benefits
that an aircraft seeks by staying in the wake of the aircraft in front. The primary
focus of the thesis is to study a single component of the formation to reveal the
characteristics which drive the design of a formation controller. A high fidelity
simulation is thus developed. Moreover, this research reflects the analyses done
for the design and flight test of the project prototype. In this scope, closed
loop performance for a single aircraft must also be studied: in a first phase, the
flight tests at low altitude include a pilot in the loop. Depending on the pilot
appreciation, some simple feedback configurations are assessed. Long term tests

at higher altitudes require the design of an autopilot.

In chapter 2 the aircraft is first considered as a rigid body. The six degree
of freedom equations of motion are derived using Newton’s law. The resulting
twelve nonlinear equations ensure a high fidelity simulation. A trim algorithm is
also explained. Finally, the baseline geometry, mass property and aerodynamics
are presented. The aerodynamics are composed of a linear set of data augmented
with corrections and a fully non linear set. The corrections account for mass

effect, flexibility effect, ground effect and propulsion effect.



However, since the airplane structure is lightly loaded, considerations on
flexibility are a prior condition. Chapter 3 opens with a short introduction to
aeroelasticity. Then energy methods are used to derive the integrated equations
of motions for the unrestrained elastic aircraft using generalized coordinates and
forces. An approximation method is assessed to estimate the generalized forces
in the Laplace domain. Finally, flutter analysis is presented using root locus

techniques and relative importance of elastic deformation is studied.

The aircraft model includes a propulsion system described in chapter 4. The
system consists in a motor and a propeller which characteristics are presented.
Then momentum theory or experimental data provide two separate approaches

to estimate thrust.

Additional aircraft feature originates from solar energy propulsion as shown
in chapter 5. The airplane configuration includes solar panels covering the wings.
Available power to the motor is computed using the projection of the solar
incidence vector onto the wing normal. The matrix rotations between fundamental
coordinate systems are determined and yield the solar incidence vector in the
airplane body axes depending on season, latitude and daytime. The model

accounts also for atmospheric absorption, solar cell efficiency and wing coverage.

Instrumentation and actuation are modeled in chapter 6. Actuators are
mounted on the wings and the tails. Onboard sensors consist of accelerometers,
gyroscopes and air data. GPS attitude data are to be included for the autonomous

configuration. Accelerometer information is derived as an example. Sensor



information is finally corrupted by band limited noise for realism.

The simulation would not be complete without including exogenous flight
conditions through atmospheric turbulence. Chapter 7 explains the statistical
structure of wind gust as described in [HB77]. General statistics on the continuous
turbulence are given in [Ano80]. Combination of dynamics and input noise
specifications yields a 3-D continuous turbulence model with variable intensity

for low and medium /high altitudes up to 80,000 ft.

The high fidelity simulation is then complete and awaits validation. The
simulation dynamics are checked against an independently derived analytical
linear model and a numerical linear model. The results are shown in chapter 8.
Then open loop responses and modes of the aircraft are summarized in chapter 9.

A sensitivity study with respect to the flight envelope characteristics is conducted.

The closed loop performance is ascertained. The pilot in the loop configuration
is first considered in chapter 10. From pilot comments on the open loop response,
proportional feedback is investigated to control the unstable spiral mode and the
lightly damped phugoid. Design trade offs and limitations are discussed. Then
the autonomous configuration is presented in chapter 11 as the combination
of a guidance scheme, a controller and a filter. The guidance scheme satisfies
structural and external constraints. The former is converted into lift coefficient
and dynamic pressure tracking and the latter mainly viewed as a range constraint.
Hence a way point guidance scheme is built: the commands for range constraints
are heading angle and altitude whereas angle of attack and forward speed are

chosen for tracking. The controller design consists in two separate parts: a



simple proportional controller for altitude and a Linear Quadratic Regulator.
The P-controller provides power setting and the LQ controller control surface
deflections. The LQ controller design assumes perfect full state information which
is not acquired by sensor data. A Kalman Filter is thus derived to estimate the
aircraft states from sensor information. However the use of an estimator changes
the good robustness properties of a full state feedback controller. A Loop Transfer

Recovery procedure is finally applied to recover the LQR robustness.

Finally, closed loop simulation cases are presented in chapter 12. The feasibility
of solar powered high altitude climb is shown. The case run is a eight hour helical
climb from Dryden (California) and the altitude reached is above 65,000 ft. Then
the way point guidance is tested through flight in moderate turbulence at low
altitude. The trajectory includes ascent, cruise and helical descent. The range

constraint is met at all time.

Appendix A summarizes the parameters and the derivation of an ISA model
with gravity as a function of altitude. The errors due to other simplifications
are computed and yield limits on the model accuracy. Appendix B presents the
basic definitions underlying the statistical model of the atmospheric turbulence.

Appendix C lists the project team members.



CHAPTER 2

Rigid Aircraft

The aircraft is first restricted to a rigid body. Its dynamic behavior is described
through nonlinear equations of motion. The coordinate systems in which the
aircraft motion is described are presented in section 2.1. Then the rigid body
nonlinear equations of motion are derived and used to obtain the trimmed flight
conditions in section 2.2. Finally, the parameter values for the project baseline

are observed in section 2.4.

2.1 Coordinate Systems

The equations of motion relate different quantities in different axis systems such
as the weight in an inertial frame, the lift in the stability axes and the thrust in
the body axes. However, the resultant equations are inferred in the body axes,

so that the transformation matrices between the axis systems must be derived.



Figure 2.1: Inertial and Body Axes Coordinate Systems

2.1.1 Inertial to Body Axis Coordinate Systems

The relation between the inertial and the body axis systems is delineated through
the Euler angles ¢, # and 1 as shown on figure 2.1. ¢ is called the bank angle,
0 the pitch angle and 1 the heading angle. From the inertial frame to the body

axes three rotations are needed:

1. The first rotation is of angle ¥ and around the inertial axis Gzp. During
this rotation, the other axes Gxg and Gyg become respectively Gz, and

Gyh.

2. The second rotation is of angle # and around Gy,. Gz, moves then to the

body axis Gy, and Gzg becomes Gz;.



3. The third rotation is of angle ¢ and around Gz;. Gy, and Gz; respectively

become the body axes Gy, and Gzy.

For each of the thereafore mentioned rotations a cosine matrix transformation is
obtained. The final transformation matrix from inertial to body axis coordinate

systems is then deduce from the multiplication of the cosine matrices, as:

1 1 1 [

SNEMEN= 2
20 Zh

with
1 1
st cosf)  — siny cosg + cosy sing sinf - sint sing + cosy sinf cos¢
R= gmb cosf)  cosy cosg + siny sinf sing — cosY sing + sint sinf) cosg E
— sinf cosf sing cost cos ¢

R is the multiplication of three orthogonal matrices and therefore has the property

RT =R

2.1.2 Stability to Body Axis Coordinate Systems

The relation between the stability and the body axes is defined through « and (3
as shown on figure (2.2). « is called the angle of attack and 3 the sideslip angle.

From the stability axes to the body axes two rotations are needed:

1. The first rotation is of angle 3 and around the stability axis Gz,. The other
stability axes Gz, and Gy, respectively rotate to an intermediate axis Gz;

and the body axis Gyp.

2. The second rotation is of angle a and around the body axis Gy,. Gz, moves

to Gz, and Gx; to Gy,



Figure 2.2: Stability and Body Axes Coordinate Systems

Similarly to (2.1), the resulting transformation between stability axes and body

axes is obtained by multiplying two cosine matrix transformations as:

— —1

JHRE -

Za 2p
with 1 1
sacosl  sinf sinacosf
T= gcosa sin@ cosf8 —sinasing3 E
— sina 0 cosQ

Similarly to R, T verifies T7 = T1.
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Using these transformations, the components of the equations of motion can

finally be combined.

2.2 Nonlinear Equations of Motion

The aircraft is modeled as a point mass rigid body: its mass is then assumed
concentrated at the center of gravity. The body is free to rotate around the three
body axes and translate along these axes. However, this 6 degree of freedom
motion is only local: to locate the aircraft on a map six additional equations for
position and attitude must be added. The whole constitutes a set of 12 nonlinear
equations. For simulation purposes, it is interesting to locate an equilibrium

point or trim as an initial condition to the simulation.

2.2.1 Derivation

The equations are obtained applying Newton’s laws, that is

1 —

F = mT (2.3a)
1 -

M o= T, (2.3b)

where F' and M are the forces and moments applied to the aircraft, T' is the
acceleration at the center of gravity and I, is the momentum. Since the result is
to be expressed in the body axes, all the needed quantities are converted using
the coordinate transformations in section 2.1. As an illustration, the airspeed
in the stability axes is given by (V,, 0, 0), this corresponds to (u, v, w) in the

body axes so that:

u = V,cosacosf(

v = V,sinpg

11



w = V,sinacos(

The transformation 7" in (2.2) is also applied for the aerodynamic forces and

moments as

D =—qSCpi, = —qSCp(cosacosBi + sin 3j, + sin a cos 61{?1,)
Y =3aSCyj, — §SCYy (— cos asin By 4 cos 3, — sin asin Bky)
L =—gSCrks = —qSCyL(—sinaiy, 4 cosaky) (2.4)
I =qSc,City = qScy,Ci(cos acos By, + sin B, + sin acos [Fky)

m = qScyCnja = §@ScwChy(— cos asin G4, + cos 57, — sin asin ﬁkAb)
n = q’Scank?a = qSc,Cp(—sin aiy, + cos ak?b)

where D is the drag force, Y the side force, L the lift, [ the rolling moment, m
the pitching moment and n the yawing moment. Besides, (7, b, k?b) are the body
axes unit vectors, (g, jo, k?o) are the inertial axes unit vectors and (7, Jq, k?a) the

stability axes unit vectors.

The weight is converted using the R matrix as

W = mgiy = mg(— sin 0%, + cos 0 sin ¢, + cos 6 cos gbk?b)

The thrust force is given by

T = T cos (i, — Tsin (fy

where ( is defined as the engine setting angle, that is the angle between the thrust

vector and the body axis 7.

To apply equations (2.3), the acceleration and momentum need to be derived

by differentiation with respect to the inertial frame. By way of illustration,

12



acceleration is obtained from differentiating twice a position: let us consider
a point M with coordinates (a, b, c) in the body axes with origin the center of
gravity G, that is (G, Ty, T, Z,) and let (O, Tg, To, Zo) be the inertial reference. The
velocity V is the first derivative of GM and is equal to the sum of the relative
speed of M with respect to the body axes and the speed of the body axes with

respect to the inertial reference:
V =T+ g+ +OM+av + b + & (2.5)
The acceleration I is the second derivative of OM and is the sum of the relative

acceleration of M with respect to the body axes, the acceleration between the

body axes and the inertial reference and the Coriolis term:
T = 4T + by + 6% + OM + a& + bjj + &5 + 2(a& + by + &%) (2.6)

Using the Kronecker ¢ and its properties on (7,7, %), the angular rates (p,q,7)

can be introduced as

TY =-TY =7
yz =-YzZ =p
ZT =—ZI =¢q

where p is called the roll rate, ¢ the pitch rate and r the yaw rate. They can be

L1 1
w% E (2.7)

Using (2.7), equation (2.6) is reduced to

written in a vector form as

l=—= — +wx V (2.8)
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where the 7|0” means with respect to the inertial frame and ”|B” with respect to

the body axes. Since V' is definite in the body axes as (u,v,w) and w = (p, q,r),

equation (2.8) becomes [ 1
1+ quw — v
F§+ru—pw E (2.9)
w + pv — uq
The same scheme applies to the momentum T,
ic g
L=—= —+wx C 2.10
dt‘o dt|p T ( )

where C in the body axes is given by
1

1
Lyap — Ixyq Ip.r
_szp Izyq + [zzr

The I;; terms are the body inertias and the I;; terms the body products of inertia.

Using equation (2.11), equation (2.10) becomes

) 1
P — Luoyq — Loot + qr(Lez — Lyy) — Loapg + Loypr + Iyz(rz — qz)
Lo = Byq — Luyh — Lot + pr(lee — Lz) = Lyar + Lyzpg + Lz (0 — 1?) E
L.t — L.p— L.+ pq(Ly, — L) — Lopr + Leqr + Ly, (¢? — p?)
(2.12)

Now, the EOM can be assessed in body axes.

2.2.2 Body Axes EOM

The first group of kinematic equations is derived from using equation (2.1) on
OG = V where OG has for components (z,y,z) in the inertial frame, so that
these equations define the position of the body center of gravity with respect to

the inertial frame.

14



1 1 1 1
@%R% Em: (2.13)

Z
where h is the altitude.

The second group of kinematic equations states the attitude of the body with

respect to the inertial frame as
W =%+ 0y + ¢T = pT + g7 + 17 (2.14)

or equivalently,
C1 . 1 111 1

sin 0 1
%%%s@smqﬁ cos¢p 0 4 E (2.15)

cosfcos¢p —sing 0 )

However, the most useful form are the inverse equations, that is the relation
between the inertial Euler angles and the body axes angular rates. If equation (2.15)

is inverted, we finally obtain

I:l 1 1 CI 11
—sin ¢ — Cos ¢ P
- -1
4 = p— —cosfcos¢ cosfsin g ¢ (2.16)
b —cosf —sinfsing —sinfcos @ r
Now equations (2.3) can be expanded as
dV — — —
m% - Faero + Fthrust + Finertial (2173)
dr. —
= = Maero (2.17b)

where the aero forces are [-D Y —L|T in the stability axes, the thrust force is

[T'cos¢ 0 Tsin¢]? in the body axes and the inertial force [0 0 mg]” in the inertial

15



frame and the aero moments are [l m n]’. Finally, we combine equations (2.13),
(2.16) and (2.17) using (2.4) to obtain 12 nonlinear equations in the body axes

as:

T = wucosycosl
+ v(—sin cos ¢ + cos ¢ sin fsin ¢) (2.18a)
+ w(sin1 sin ¢ 4 cos ¥ sin O cos ¢)

Yy = wusinycosl
+ v(cos ¥ cos ¢ + sin 1 sin Osin ¢) (2.18Db)

+ w(— cos 1 sin ¢ + sin 1 sin 6 cos @)

h = wsin® — vcosfsiné — wcosf cos ¢ (2.18c¢)

¢ = p+tanb(gsin¢ + rcos ) (2.18d)

0 = qcosp—rsing (2.18e)

b = (gsin¢ + rcos ) (2.186)
cos 0

U+quw—rv = W_W_W+ i — gsiné (2.18g)
)+ U — = —2—1—3—1— sin ¢ (2.18h)
Utru—pw = —35+ 5+ geosdsin .

L D Y Tsi
WHpr—qu = ——— — — — — sin ¢ +gcosfcosgp  (2.181)

w w w W

Liop = Loy = Loat = —qr(Les = Lyy) + Lopg — Loypr — 12 (r* = ¢7)

+ lcosfcosa —mcosasinf —nsina (2.18j)
Lyyd = Loyp = Iyt = =pr(Lee = Lz) + Loyar — Lzpg — Loz (9° — 1)

+ Isin 3 + mcos 3 (2.18k)
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Izzr - [:czp - Iyzq = _pQ(Iyy - Ixx) Iyzpr - Ixzqr - Ixy(qz - pZ)

+ Isinacos f — msin asin 4 n cos o (2.181)

The equations of motion are also used to spot out the equilibrium point or
trim from which the simulation begins. The following presents a way of selecting

dependent and independent parameters to compute the trim conditions.

2.2.3 Aircraft Trim Algorithm

Trimmed flight means that the sum of forces and moments acting about the center
of gravity of the aircraft is zero as summarized in equation (2.19). Trimmed flight

is equivalently achieved when accelerations and angular rates are annihilated.

0 = Muero (2.19a)

0 = Faero + F;thrust + Finertial (219b>

Functional relations for each quantity yields

0 = MAem(h, V, a, (ST, 5A) (220&)

0 = Faero(ha ‘/a «, 5Ta 5A) + Fthrust(pa V) + F;'nertial(ma ha 7) (220b)

where 7 is the flight path angle defined as § — « and p is the power setting.
Equations (2.20) have five mathematical degrees of freedom: two equations and
seven parameters.

The following combinations for the four independent variables are to be considered:

1. mg, h, V (or q) are always chosen as independent variables.

2. yor p/ aor dy are the "to-be-chosen” independent variables.
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And extensively the problem is to ascertain the set of ”dependent” variables that
generates zero accelerations and angular rates: we want to determine Y = f(X)
such that G(Y,X) = 0. A Newton-Raphson algorithm solves this "zero of

function” problem.

The motion defined by the 12 nonlinear equations was derived for a point mass
body. The forces and moments are nevertheless computed from the characteristics

of a three-dimensional body.

2.3 Baseline Structural Design

In this section, the prototype configuration defined after a series of trade-offs
from August 1995 to September 1996 is described. As a preliminary, the following

nomenclature is defined:

S | surface area

surface span

tc | Thickness ratio

c Mean aerodynamic chord
tr | Taper ratio

A, | Sweep angle

A | Aspect ratio

0y | surface dihedral

The wing and the tail share the above parameters, however, the tail has additional

features such as

18



le Length of the tail over wing mean aerodynamic chord
StSw | Ratio of tail area over wing area
By, Elevator hinge distance

Arm | Distance to the tail

To the symbols, the definition of the static margin (sm) must be added as the
distance between the aerodynamic center, that is the point where the aerodynamics

forces act and the center of gravity.

The rigid baseline is fully described by its geometry, its mass property and
its aerodynamics. The geometric parameters are given for the wing, tail and
fuselage in tables 2.1, 2.2 and 2.3, the coordinates for the center of gravity and
the aerodynamic center in table 2.5 and the mass properties in table 2.6. Finally
the aerodynamics consists in a static data set completed with corrections and a

nonlinear data set.

2.3.1 Baseline Geometry

The geometry describes the aircraft structural components as wings, fuselage
and tails. Besides the parameters for the aircraft surfaces, the body motion also
depends on special ”points” on the aircraft and their relative position as shown

on fig (2.3).

The z-axis reference for the positions in figure (2.3) is different from the
z-body axis since it starts at the aircraft nose and is positive backwards. It
is also noted that the static margin changes with power setting or thrust. An
increase in speed indeed stabilizes the aircraft. Expected static margin variations

range from -6% to 8%. This effect is taken into account in the stability derivatives
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Component | Parameter Value | Unit
Wing Airfoil NACA 6409
S 150 | ft2
b 43.30 | ft
¢ 3.46 | ft
A 12.5 | nondim
te 0.09 | nondim
tr 1.00 | nondim
A, 0.00 | deg
Ow 0.0 | deg
incidence 4.00 | deg

Table 2.1: Geometric Parameters for the Baseline Wing

Fuselage

Aircraft nose

Figure 2.3: Relative Position of Important Points
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Component | Parameter Value | Unit
Tail Airfoil SD8020
S/2 9.13 | ft
b/2 5.00 | ft
c 1.83 | ft
A 5.48 | nondim
tc 0.101 | nondim
tr 1.00 | nondim
A 0.00 | deg
Ow -35.00 | deg
incidence -3.00 | deg
Arm 3.5Cwing | ft
Ep 0.3¢tai | 1t
le 2.5 | nondim
StSw 0.1 | nondim

Table 2.2: Geometric Parameters for the Baseline Tail

Component | Parameter | Value | Unit

Fuselage length 19.37 | ft
diameter 0.25 | ft

Table 2.3: Geometric Parameters for Baseline Fuselage
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Component | Parameter | Value | Unit

Propeller diameter 3.00 | ft

Table 2.4: Geometric Parameters for the Baseline Propeller

Name Coordinate | Unit
Center of gravity x =T3.8 inches
y=0.0
z2="72
Aerodynamic Center | x = 73.8 inches
y=0.0
z="T2
Static Margin sm=00 | %

Table 2.5: Baseline Reference Points Coordinates
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Weight 205.74 | 1b

I, 2,248.,957.00 | 1b in?
I, 651,751.00 | b in?
I, 2,851,457.00 | 1b in?
I,. 21,923.00 | b in?

Table 2.6: Baseline Weight and Inertias

corrections (see 2.4).

2.3.2 Baseline Mass Properties

In the following, the mass and inertias are assumed to remain constant during
the different flight phases. As the airplane uses batteries or solar power, the mass

is not expected to change much.

The aerodynamics of the aircraft are described through stability derivatives.
First static values are computed from aerodynamic codes such as DATCOM. Then
a set of corrections is applied to form the linear set of aerodynamics. Finally strip

theory and wind tunnel data allowed to build a nonlinear set.
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2.4 Baseline Aerodynamics

The aerodynamic forces and moments are assessed through coefficients as:
Drag force D= —gSCp

Side force Y = gSCy
Lift force L= —gSC;
Rolling moment 1= @ScC

Pitching moment m =  ¢ScC),

Yawing moment n = gScC,

These aerodynamic coefficients are built from stability derivatives that reflect
the influence of the flight parameters such as angle of attack, airspeed, sideslip

and others as:

Cp, = Cpy+Croa+ %bCqu + Clyr 01 + Cryada (2.21a)
Co = Chy+ Congr + %bcmqq + Chgy 57 + Congaa (2.21D)
Cy = CyfB+ QVbCypp + %bcyrr + Cyyy 67 + Cyyada (2.21c)
C, = CB+ %bclpp + %bclrr + Clyr 61 + Cionda (2.21d)
Co = Cuyfi+ QVanpp + QVan,r 4 Clogy 07 + Crag a0 (2.21¢)

The drag coefficient C'p is found from the polar of the aircraft. This coefficient
introduces a nonlinearity in the model as it involves a quadratic term. The polar

equation is given by:

Cp = CD0+CDi (222&)

Cp Cp, + K (C, — Cr,)?, (2.22b)

A first approximation for the stability derivatives is just constant values

forming the static linear set. It can be pointed out that even in the linear static
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Cr, | 0.94505

Cme | 0.01795

Table 2.7: a = 0 Stability Derivatives
Cr. | 0.09900
Cing | -0.00630

Table 2.8: Unit « Stability Derivatives (per degree)

set,some stability derivatives are nonlinear functions of the lift coefficient. It has
been ascertained it improved the accuracy of the linear set without using fully

nonlinear aerodynamic coefficients.

2.4.1 Static Stability Derivatives

The stability derivatives are grouped with respect to the influence coefficient.
Table 2.7 presents the longitudinal stability derivatives computed for a zero angle
of attack, table 2.8 the influence of the angle of attack, table 2.9 the influence of
the sideslip angle, tables 2.10, 2.11 and 2.12 the respective influence of the roll
rate, the pitch rate and the yaw rate. finally tables 2.13 and 2.14 show the effect

of control surface deflections. The drag coefficients are summarized in table 2.15.

To be closer to the experimental aerodynamics and still keep a linear data

set, the static stability derivatives need to be corrected.

Cy, | -0.00308
Cp, | -0.00148
Cpg | 0.00043

Table 2.9: Unit  Stability Derivatives (per degree)
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Cy, | -0.12820
), | -0.68668
Chy | -0.12630 C,
Table 2.10: Roll Rate Stability Derivatives (per radian)
Cry | 6.79937
Chg | -5.19540
Table 2.11: Pitch Rate Stability Derivatives (per radian)
Cy. | 0.05959
G | -0.00206 + 0.3 O
Cn, | -0.01328 - 0024 C%
Table 2.12: Yaw Rate Stability Derivatives (per radian)
Crs | 0.00279
Chns | -0.00613
Cy; | 0.00112 reversed sign for left
Ci; | -0.00014 reversed sign for left
Chrs | -0.00024 reversed sign for left
Table 2.13: Right Tail Stability Derivatives (per degree)
Cr. | 0.00706
Con | 0.00076
Cy, |-0.00200 reversed sign for left
Ci, |-0.00251 reversed sign for left
Cra | 0.00028 reversed sign for left

Table 2.14: Right Wing Twist Stability Derivatives (per degree)
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Cp, | 0.009400 from 0 to 5K
Cp, | 0.000453
K | 0.024500
Cp. | -0.02350

Table 2.15: Drag Polar Coefficients

q(psf) Cr,+ Cong+
0.0 | 0.04182 | -0.02719
1.0 | 0.04053 | -0.02513
2.0 |1 0.03946 | -0.02337
3.0 | 0.03856 | -0.02185
4.0 |1 0.03780 | -0.02053
5.0 1 0.03716 | -0.01937
6.0 | 0.03661 | -0.01833

Table 2.16: Correction in basic data for mass effect

2.4.2 Corrections

The corrections are made to compensate for basic phenomena influencing the
aerodynamics. The phenomena considered here are mass effect, flexibility effect,

ground effect, propulsion effect and dihedral effect.

The corrections are computed as additive or multiplicative factors, denoted
respectively (+) or (x). From these tabulated values, a cubic curve fit is found

for every correction.

The mass effect consists in the deformation of the aircraft shape under its
own weight and depends on dynamic pressure. It affects particularly the basic

data Cr, and C,,, as shown in table 2.16
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q(psf) Cr,+ Cing+
0.0 | 0.00000 | 0.00000
1.0 | -0.05004 | -0.00199
2.0 | -0.10085 | -0.00417
3.0 | -0.15236 | -0.00653
4.0 | -0.20468 | -0.00906
5.0 | -0.25784 | -0.01178
6.0 | -0.31190 | -0.01468

Table 2.17: Correction in basic data for flexibility effect

The flexibility effect accounts for the deformation of the aircraft shape under
static load and therefore depends on the dynamic pressure. It corrects the o and
0 stability derivatives, the rotary (p,q,r) stability derivatives and the control

surface stability derivatives as summarized in tables 2.17 through 2.22.

The ground effect models the influence of the gravitational potential at low
altitude and thus depends on the ratio of the wing span to the altitude. It acts
on the o and 3 stability derivatives and equaly on the control surface stability

derivatives. It also affects the drag polar as shown in tables 2.23 through 2.25.

The propulsion effect reflects in the increase of stability with thrust or thrust
coefficient as defined in chapter (4). It affects the o and pitch rate stability

derivatives illustrated in tables 2.26 and 2.27.

Yet if stall effects are to be modeled, the linear set must be replaced by

nonlinear stability derivatives.
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Table 2.18: Correction in unit « data for flexibility effect

q(pst) | Crex | Chgt
0.0 | 1.00000 | 0.00000
1.0 | 0.99888 | 0.00075
2.0 | 0.99866 | 0.00140
3.0 1 0.99918 | 0.00198
4.0 | 1.00035 | 0.00249
5.0 | 1.00209 | 0.00296
6.0 | 1.00435 | 0.00339

q(psf) Cyp X Ci X Crpt
0.0 | 1.000000 | 1.000000 | 0.000000
1.0 | 0.979715 | 0.968610 | -0.000013
2.0 | 0.961648 | 0.937220 | -0.000024
3.0 | 0.945483 | 0.914798 | -0.000033
4.0 | 0.930903 | 0.892377 | -0.000042
5.0 1 0.917591 | 0.869955 | -0.000050
6.0 | 0.905547 | 0.852018 | -0.000058

Table 2.19: Correction in unit [ data for flexibility effect
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q(psf)
0.0

1.0
2.0
3.0
4.0
5.0
6.0

Cy, X
1.000
0.832
0.656
0.472
0.280
0.081

-0.123

Ci, X
1.000
1.013
1.026
1.040
1.054
1.069

1.085

Chp X
1.000
0.616
0.199
-0.250
-0.728
-1.229
-1.753

Cry X
1.000
0.921
0.846
0.775
0.706
0.639

0.574

Cing X
1.000
0.947
0.904
0.868
0.838
0.813
0.792

Cy. %
1.000
0.972
0.947
0.925
0.905
0.887
0.871

), %
1.000
0.970
0.944
0.920
0.899
0.880

0.863

Chp, X
1.000
0.969
0.942
0.918
0.896
0.876
0.858

Table 2.20: Correction in rotary data for flexibility effect

q(psf)
0.0

1.0
2.0
3.0
4.0
5.0
6.0

Crs X
1.000000
0.840226
0.706767
0.595865
0.500000
0.417293
0.347744

Crg X
1.000000
0.885780
0.788270
0.704130
0.630600
0.565680
0.508020

Cy; X
1.000000
0.919632
0.846379
0.779406
0.717874
0.660527

0.607367

Cs X
1.000000
0.921233
0.849315
0.784247
0.722603
0.667808
0.613014

Chg X
1.000000
0.922269
0.850840
0.785714
0.724790
0.670160
0.617647

Table 2.21: Correction in tail data for flexibility effect
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q(psf)
0.0

1.0
2.0
3.0
4.0
5.0
6.0

Cls.
1.000000
1.008742
1.018093
1.028054
1.038558
1.049671
1.061327

Crnga X
1.000000
1.035535
1.068568
1.098598
1.127627
1.155656
1.182683

Cy,, X
1.000000
1.145000
1.290100
1.435200
1.580300
1.725300
1.870400

Clyo X
1.000000
1.014818
1.030191
1.046120
1.062604
1.079830
1.097425

Co,
1.000000
1.142800
1.285700
1.428500
1.571300
1.714200

1.857000

X

Table 2.22: Correction in wing data for flexibility effect

2.4.3 Nonlinear Aerodynamic Coefficients

The nonlinear aerodynamic coefficients are computed from strip theory and wind
tunnel data as a function of angle of attack and control surfaces deflection. Let
us consider the longitudinal dynamics: the stability derivatives C', Cp and C,,

are given as 2-D tables for which a curve fit is found using bicubic spline [WF92].

the 1-D projection is shown below.
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h/b
0.080
0.100
0.150
0.200
0.300
0.400
0.500
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
3.000
4.000

Cing X
-0.0379
-0.0280
-0.0166
-0.0109
-0.0054
-0.0031
-0.0019
-0.0013
-0.0006
-0.0004
-0.0002
-0.0002
-0.0001
-0.0001
-0.0001

0.0000

0.0000

ClLa X
1.0938
1.0758
1.0523
1.0391
1.0244
1.0166
1.0119
1.0089
1.0054
1.0036
1.0025
1.0018
1.0013
1.0010
1.0008
1.0002

1.0000

Cing X
-0.0057
-0.0038
-0.0020
-0.0013
-0.0006
-0.0003
-0.0002
-0.0001
-0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

K x
0.6020
0.6525
0.7322
0.7870
0.8568
0.8979
0.9264
0.9441
0.9649
0.9766
0.9828
0.9882
0.9912
0.9939
0.9944
0.9996
1.0000

CYB X
1.0711
1.0360
1.0169
1.0106
1.0052
1.0027
1.0016
1.0011
1.0005
1.0003
1.0003
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000

Cls X
1.1171
1.1044
1.0677
1.0454
1.0223
1.0127
1.0072
1.0048
1.0024
1.0016
1.0008
1.0008
1.0008
1.0008
1.0008
1.0000

1.0000

Can
1.0790
1.0333
1.0125
1.0083
1.0042
1.0021
1.0021
1.0021
1.0021
1.0021
1.0021
1.0021
1.0021
1.0021
1.0000
1.0000

1.0000

Table 2.23: Correction for ground effect

32




h/b | Cryx | Cpsx | Cyyx | Cigx | CpeX
0.080 | 1.1262 | 1.1669 | 1.0636 | 0.9724 | 1.0531
0.100 | 1.0667 | 1.0857 | 1.0226 | 0.9379 | 1.0163
0.150 | 1.0354 | 1.0294 | 1.0067 | 0.9448 | 1.0041
0.200 | 1.0279 | 1.0137 | 1.0042 | 0.9586 | 1.0000
0.300 | 1.0200 | 1.0047 | 1.0025 | 0.9724 | 1.0000
0.400 | 1.0143 | 1.0022 | 1.0017 | 0.9862 | 1.0000
0.500 | 1.0109 | 1.0012 | 1.0017 | 0.9862 | 1.0000
0.600 | 1.0083 | 1.0007 | 1.0008 | 0.9931 | 1.0000
0.800 | 1.0049 | 1.0003 | 1.0008 | 0.9931 | 1.0000
1.000 | 1.0034 | 1.0002 | 1.0008 | 0.9931 | 1.0000
1.200 | 1.0023 | 1.0002 | 1.0008 | 1.0000 | 1.0000
1.400 | 1.0019 | 1.0000 | 1.0008 | 1.0000 | 1.0000
1.600 | 1.0011 | 1.0000 | 1.0008 | 1.0000 | 1.0000
1.800 | 1.0011 | 1.0000 | 1.0008 | 1.0000 | 1.0000
2.000 | 1.0008 | 1.0000 | 1.0008 | 1.0000 | 1.0000
3.000 | 1.0004 | 1.0000 | 1.0008 | 1.0000 | 1.0000
4.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

Table 2.24: Correction in tail data for ground effect
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A(pst) | CrsaX | CogaX | CysaX | ClaaX | Chga X
0.080 | 1.0392 | 1.1609 | 1.1229 | 1.0538 | 1.0000
0.100 | 1.0349 | 1.0978 | 1.1026 | 1.0436 | 1.0000
0.150 | 1.0281 | 1.0122 | 1.0684 | 1.0275 | 1.0000
0.200 | 1.0237 | 0.9735 | 1.0467 | 1.0183 | 1.0000
0.300 | 1.0175 | 0.9613 | 1.0233 | 1.0092 | 1.0000
0.400 | 1.0130 | 0.9695 | 1.0140 | 1.0051 | 1.0000
0.500 | 1.0099 | 0.9776 | 1.0078 | 1.0029 | 1.0000
0.600 | 1.0077 | 0.9837 | 1.0047 | 1.0018 | 1.0000
0.800 | 1.0049 | 0.9919 | 1.0016 | 1.0011 | 1.0000
1.000 | 1.0034 | 0.9939 | 1.0016 | 1.0007 | 1.0000
1.200 | 1.0024 | 0.9959 | 1.0000 | 1.0004 | 1.0000
1.400 | 1.0018 | 0.9980 | 1.0000 | 1.0004 | 1.0000
1.600 | 1.0014 | 0.9980 | 1.0000 | 1.0004 | 1.0000
1.800 | 1.0011 | 1.0000 | 1.0000 | 1.0004 | 1.0000
2.000 | 1.0008 | 1.0000 | 1.0000 | 1.0004 | 1.0000
3.000 | 1.0003 | 1.0000 | 1.0000 | 1.0004 | 1.0000
4.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

Table 2.25: Correction in wing data for ground effect
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-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Cro+
-0.00084
-0.00126
-0.00162
-0.00189
-0.00211
-0.00231
-0.00248
-0.00262
-0.00274
-0.00286
-0.00297
-0.00308
-0.00318
-0.00328
-0.00336

Crot
0.00016
0.00024
0.00030
0.00035
0.00039
0.00043
0.00046
0.00049
0.00051
0.00053
0.00055
0.00057
0.00059
0.00061
0.00063

Como+
-0.00550
-0.00202
0.00126
0.00425
0.00703
0.00981
0.01245
0.01499
0.01748
0.01994
0.02239
0.02483
0.02725
0.02965
0.03202

Conat
-0.00053
-0.00079
-0.00101
-0.00118
-0.00131
-0.00144
-0.00155
-0.00163
-0.00171
-0.00178
-0.00185
-0.00192
-0.00198
-0.00204
-0.00210

Oy, +
-0.00029
-0.00044
-0.00057
-0.00066
-0.00074
-0.00081
-0.00087
-0.00092
-0.00096
-0.00100
-0.00104
-0.00108
-0.00111
-0.00115
-0.00118

Clug +
0.00008
0.00012
0.00015
0.00018
0.00020
0.00022
0.00023
0.00025
0.00026
0.00027
0.00028
0.00029
0.00030
0.00031
0.00031

Table 2.26: Correction for propulsion effect

35




-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Crot
0.06017
0.09026
0.11584
0.13539
0.15044
0.16536
0.17735
0.18729
0.19603
0.20420
0.21211
0.21985
0.22722
0.23406
0.24032

Clng +
-0.20105
-0.30157
-0.38702
-0.45236
-0.50262
-0.55248
-0.59254
-0.62576
-0.65497
-0.68226
-0.70870
-0.73453
-0.75916
-0.78203
-0.80294

Cyut
0.00903
0.01355
0.01739
0.02032
0.02258
0.02482
0.02662
0.02811
0.02942
0.03065
0.03184
0.03300
0.03410
0.03513
0.03607

Count
10.00241
-0.00362
-0.00465
-0.00543
-0.00604
-0.00663
-0.00712
-0.00751
-0.00786
-0.00819
-0.00851
-0.00882
-0.00912
-0.00939
-0.00964

Table 2.27: Correction for propulsion effect
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Figure 2.4: Nonlinear Drag coefficient vs. angle of attack
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Figure 2.5: Nonlinear Drag coefficient vs. elevator deflection
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Figure 2.6: Nonlinear Lift coefficient vs. angle of attack
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Figure 2.7: Nonlinear Lift coefficient vs. elevator
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Figure 2.8: Nonlinear Moment coefficient vs. angle of attack
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Figure 2.9: Nonlinear Moment coefficient vs. elevator deflection
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CHAPTER 3

Elastic Aircraft Characteristics

The aircraft is now considered to be a flexible body: the effects of elastic forces are
added to the interactions between inertial and aerodynamic forces. This study is
a preliminary work on aeroelasticity analysis applied to the aircraft. The relative
importance of elastic behavior is compared to the rigid body characteristics
developed in chapter 2. In section 3.1 a general approach to aeroelasticity is
introduced. The basic method for obtaining complete equations of motion is
derived using energy methods in section 3.2. Finally, in section 3.3 the result is

applied to the elastic unrestrained aircraft.

3.1 Introduction to Aeroelasticity

Aeroelasticity is present in a large class of aircraft design problems and is often

referred to as the study of the mutual interaction between inertial, aerodynamic
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Figure 3.1: Aeroelasticity Field Illustration

and elastic forces acting on a body. In this section a very brief presentation
of aeroelastic phenomena is introduced, a more detailed study on aeroelastic
phenomena can be found in [Col46] and [RH55]. A visualization of this interaction
is provided in figure (3.1) where the aerodynamic, elastic and inertial forces,

denoted A, E and I, are placed at the vertices of a triangle.

3.1.1 Historical Background

Aeroelastic effects began to play an important role in aircraft design in the early
stages of World War II; as inertial loads stagnated while flight speeds increased,
aircraft structures were not rigid enough to preclude aeroelastic phenomena.
As an example, tail flutter was the most common aeroelastic problem when
both elevators were not connected to the same torque tube. This phenomenon
appeared as a self excited oscillation caused by the coupling between the fuselage

and the tail low frequency modes of vibration. Wing problems appeared when
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designers abandoned biplanes for monoplanes with a much lower torsional rigidity.
Antony Fokker first documented a case in which static aeroelastic effects, such as
wing tip incidence increase with load, combined with steep dive speeds resulted
in high wing torsion and caused the wings of the D-8 to collapse during combat

maneuvers.

3.1.2 Common Phenomena

Some of the most common aeroelastic phenomena are explained below. Their

relationships are illustrated in figure (3.1).

Flutter: any dynamic instability occurring in an aircraft in flight where the
elasticity of the structure plays an essential part in the instability. The

velocity at which this begins is called the ”flutter speed”.

Buffeting: transient vibrations of the aircraft structural components due to
aerodynamic impulse produced by the wake behind wing nacelles, fuselage

pods, or other components of the aircraft.

Dynamic Response: transient response of the aircraft structural components
produced by rapidly applied loads due to gusts, landing, gun recoils, abrupt

control motions, moving shock waves and other dynamic loads.

Aceroelastic Effects on Stability: effect of the structure elastic deformations

on dynamic and static airplane stability.

Load Distribution: influence of elastic deformations of the structure on the

distribution of aerodynamic pressures over the structure.

Divergence: static instability of a lifting surface in flight, at a speed called

divergence speed, where the elasticity of the structure plays an essential

42



role in the instability.

Control Effectiveness: influence of elastic deformations of the structure on the

controllability of the airplane.

Control System Reversal: condition occurring in flight at the control reversal
speed, at which the intended effects of displacing a given component of
the control system are completely nullified by elastic deformations of the

structure.

3.2 Lagrange’s Equations

The interest of this study is to define the influence of elastic forces on the aircraft
performance. The rigid body equations of motions need therefore to be refined
for the unrestrained elastic body. One approach is to use energy methods and

more precisely, Lagrange equations.

In [RH55], [BA62] and [Mil64], equations of motion for elastic bodies are
obtained from energy methods rather than from direct application of Newton’s
Laws. The general form of Lagrange’s equations is derived using energy methods
such as the Principle of Virtual Work or equivalently the Principle of Minimum

Total Potential.

3.2.1 Energy Principles

Theorem 3.2.1 (Principle of Virtual Work)

If a body is in equilibrium under the action of prescribed external forces, the
(virtual) work done by these forces in a small additional displacement compatible

with the geometry constraints (virtual displacement) is equal to the change in
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strain energy.
oW, =o6U (3.1)

To express equation (3.1) differently, the minimization of the total potential
7w =U — W, is considered
Theorem 3.2.2 (Principle of Minimum Total Potential)
Among all possible deformation configurations compatible with all the geometric
constraints, the configuration that satisfies the equations of equilibrium is the one

which minimizes the total potential 7.

Mathematically, the total potential reaches a stationary value or its first variation

18 zero as

57 =0 (3.2)

3.2.2 Lagrange’s Equations

Lagrange’s equations are a specialized form of the Principle of Virtual Work.
They apply to holonomic systems: the motion and the eventual constraints
can be fully described by a set of n generalized coordinates {¢;}. The term
generalized coordinates means that the ¢;’s combine polar coordinates with the

usual rectangular coordinates.

Let us consider such an unrestrained three dimensional continuous elastic
body with external forces {F;} applied over its outer surface and inertial forces
applied over its volume. Consequently, the body undergoes a small displacement [
with respect to a fixed reference axis system such as the body axes. The generated
work is then the sum of the work obtained from the forces on the surface and

the work from the inertial forces W, = W, + W,,. Let us first consider the
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external forces acting on the surface. The resultant force Fis expanded into its
components in the reference frame as F' = [F, F, F,]" and the displacement [ as

I=luvw.

Let us consider now an additional infinitesimal virtual displacement 6/. This
displacement does not actually occurs, it is simply imagined. The work done by

the external force F to create 1 is
(I (I

W, = F.oldS= (F,bu+ F,6v+ F.6w)dS (3.3)
S S

This work is also virtual since the external forces do not actually work. Any

displacement u, v or w can be expressed in terms of {¢;} as

ou=  —0q;; o= —0q; ow= =g (3.4)
i=1 04 i=1 04 i=1 04;

By using (3.4) into (3.3), the integrand becomes

P P ow
Fudu+ F0v+ Fow=  Fpee + Fyoe + F,5% 5g, (3.5)

i=1 0qi ! 0q; 9q;

Let us consider now the left hand side of equation (3.3). Work is usually
defined as the product of a force and the displacement where the force applies.
In the case of generalized forces this notion can be extended to include generalized
displacements as

[ 2
Wa=  Qidg (3.6)
i=1

where the generalized forces are denoted ;. By inspection of equation (3.4), the

generalized forces can be related to F, so that

|:|I:Ia 9 5 1

U v w

i = F,—+F,—+F,— d .
© S 0g; * yﬁ(]z‘ * 0q; S (3 7)
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Virtual displacements due to inertial forces acting on the body volume are
now examined. If the displacement is defined as [ = [u v w]?, the inertial force
per unit volume is equal to the acceleration 1. The generated virtual work is
therefore

D: B 1
Wi == Ll pdV =—  (idu + 0v + wow) pdV (3.8)
v v

As equation (3.5), the integrand is expanded using the generalized coordinates

to obtain — —
ibu+ iy +iow= oo+ 4ol sg (3.9)
i=1 dq; dq; dg;
so that equation (3.8) becomes
=4 —
Wi = — a2% 4 52% 4 62 v sy (3.10)

By using the fact that
1 ]
d . Ou . Ov L Ow L ou ov LOw 0w . Ov oW

— U =

dt  9g; - Ua%’ * wa%' dq; * 0g; dq; 0g; 0q; w@qi

equation (3.10) becomes

1 1
=y Ou . Ov Ow

Wi = — — U— +U— +w pdV dq;
_ dt  0qg; q; Jq;
"1V|:|a_q a'q a_|g_‘|
w 0 W
) ; [ dV dq; 3.11
+i=1 v "og " og +w(9qz- P 4 (3:11)
If Introducing the kinetic energy T as
1 D;Z 1 1
T== 1pdV== (@+*+u?)pdV (3.12)
2 v 2 v

Using the generalized coordinates, we can define the partial derivatives with

respect to the generalized coordinates and generalized velocities, denoted g—; and

g—g respectively as
oT O a0 ow
= a0 Sl pav (3.13a)
dq; v _0Jg  0g dq;
oT O a0 ow
= ‘ ' ' dv 3.13b
9q; 14 ua% +U@C]i * 9q; P ( )
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To further simplify equation (3.13), g—; must be determined in terms of the

generalized coordinates as

1 1 1 1
Oi _ 0 MNduMa;y 0 (Adu] o Ou (3.14)
8%‘ 8%‘ j=1 an dt 8qi j=1 8%‘ aQi
so that equation (3.13) is reduced to
— 1
or ou ov ow
= ‘ ) ' av 3.15
9d; 14 ua% +U8Qz‘ +w8% g ( )

Finally, using (3.15) and (3.12), the virtual work due to an inertial force can be
expressed in terms of the kinetic energy as

dt i=1 8%‘ 4 i=1 8qi

The last element to be evaluated is the strain energy U. If the strain energy
per unit volume is defined as Uy, the change in strain energy is symbolically

expressed as
1

SU = Uy dV (3.17)
14

Since the strain energy per unit volume can also be assessed using the generalized

coordinates, equation (3.17) is equivalent to

so that (3.17) becomes

o
. 7a q (3.19)

Finally the virtual work principle is applied and yields

SW, = W, + 6Wi, = 6U (3.20)
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20

Figure 3.2: Inertial and Body Axis Systems

By expanding (3.20) using (3.16), (3.6) and (3.19), the Lagrange’s equations of
motion are obtained as

e g or™  am
i— 0 oo toao 0= 0 3.21
YT w aa T .94 (3:21)

or equivalently, 1 1
d or T oU _
dt  0g; dq; Jq; N

Qi (3.22)

3.3 Integrated Equations of Motion

The application of equation (3.23) to the aircraft shall provide the integrated
equations of motion for the unrestrained elastic vehicle.
C 1 1
d or oT n ou
dt g Jdq;  0Ogi

— Qi (3.23)

The axis systems considered (fig 3.2) are an inertial frame [Xg Yy Zo] and the

traditional aircraft body axes [X Y Z].

The position of any point on the body surface is defined by E with respect

to the inertial reference frame. The vector E can be decomposed into R + 7 as
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Figure 3.3: Rigid and Elastic Body Coordinate Systems

shown on figure (3.3). Finally, the local displacement 7 is the sum of rigid body

displacement 75 and elastic body displacement e.

As a first approximation, only infinitesimal displacements are assumed, so
that the deformed body and the rigid body can both be described in the aircraft
body axis system. The generalized coordinates {¢;} can as well be partitioned into

two groups: generalized rigid coordinates {¢,} and generalized elastic coordinates

{ge}

3.3.1 Description of the Elastic Deformation

The deformation of an elastic body can in general be determined by using an

infinite number of generalized coordinates. Practically, this infinite set is reduced
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to the minimum number, say n, required to achieve the desired precision. Still
the degree of freedom n can be too high to integrate the equations of motion
directly. To further simplify the deformation description, simple harmonic motion
is assumed so that there is decoupling between space and time. The in-vacuo
vibration modes 7;’s or normal modes are used as the coordinates instead of the
¢;’s. It is commonly asserted that these modes are orthogonal to the rigid body
modes, so that the elastic motion can be treated independently from the rigid
body motion. A more detailed discussion on the transformation is presented

in [Mil64]. Any elastic deformation is now given by

1
e= Di(z,y,2)n(t) (3.24)
i=1
Since the rigid coordinates and the elastic coordinates are independent, the

kinetic and strain energy can be separated into the rigid and elastic components.

3.3.1.1 Kinetic Energy

The kinetic energy obtained from elastic deformations is by definition

1 de de
T=-m— — 2
o"at " at (3.25)
using equation (3.24), (3.25) becomes
1 1 ) 1 )
T=Sm By ) By i) (3.26)
i=1 j=1
Since the modes are normal,
1
i 1=]

=iz
where M; is called the generalized mass. Finally, equation (3.26) is reduced to
1 £ 1

T=- M (3.28)
2,

)
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3.3.1.2 Strain Energy

The strain energy from elastic displacements is by definition

Irzl 1
1 d

using the normal mode expansion in (3.24), equation (3.29) becomes

1
1 > E 1 2 1
U=—-—-m— Qi - Pymy (3.30)

Normal coordinates are a base set to describe simple harmonic motion. Their

derivatives can thus be assessed in terms of natural frequency as

replacing (3.31) into (3.30) and using (3.27), the strain energy reduces to

 —
Mywin; (3.32)

=1

U =

|~

3.3.2 Description of the Rigid Motion
3.3.2.1 Kinetic Energy

The kinetic energy T for the rigid body is by definition

1 d(R+T5) d(R+To)

T=m—— - (3.33)

If the inertial velocity V and the rotation vector @?! between the inertial and

the body axes are introduced as

— dR
A— 34
o (3.34a)
o _ i X Tg (3.34D)

dt
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equation (3.33) becomes

1 — _
T=gm (V + 3% x79) - (V+ @ x 7p) (3.35)

Finally, given the inertia dyadic I, equation (3.35) is simplified to

1 1 7o
T = §mv2 + infT Iw". (3.36)

3.3.2.2 Potential Energy

There is no strain energy for the rigid body since there is no deformation by
definition. The potential energy is thus composed uniquely of the gravitational
potential energy U,

Ug=—mgR (3.37)

Lagrange’s formula can now be applied to the elastic and rigid components

to get the equations of motion.

3.3.3 Equations of Motion

Similarly to the coordinates, the generalized forces can be decomposed into elastic
generalized forces and rigid generalized forces. The rigid forces are the traditional
aerodynamic, propulsive and inertial forces as seen in chapter 2. The elastic
forces arise from the action of the rigid forces on the flexible structure. Let @)
be thus partitioned into a rigid and an elastic component as Q = [Qr Qg].
The generalized rigid coordinates {g.} are further decomposed into rigid linear
displacements and rigid angular displacements. A force Qr in Qg corresponds to
the linear displacement and a moment )y, in QQr to the angular displacement .
Finally, the total generalized force is Q = [Qr Qu Qr|T.

Equation (3.23) can now be applied three times.
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Equations (3.36) and (3.37) are separated into linear and angular elements as

Tr = %sz (3.38a)
Upr = —mgR (3.38b)
Ty = %waT JwP! (3.39a)
Uy = 0 (3.39b)

The rigid body force equation is obtained by combining equations (3.38) with Qr
into (3.23):

av
m%+mw13 x V=mg+Qr (3.40)

The rigid body moment equation is similarly derived using (3.39) and Q,; as
!B

dt

+w? x (I-w")=0Qu (3.41)

m

Equations (3.40) and (3.41) are the traditional force and moment equations for
a point mass rigid body. They are fully equivalent to the equations derived
from Newton law within the assumption of infinitesimal displacements. If (3.28)
and (3.32) are combined with Q)g, the elastic equations of motion are finally
assessed as

My + Miw?n; = Qg (3.42)
The damping term was neglected for simplicity, it can be added a posteriori
Mij; + 2Gwii + Miw?n; = Qp, (3.43)

If Qr and Q); are obtained from the sum of the forces and moments acting
on the rigid aircraft, Q) is computed from potential flow theory and results most
of the time in a complex matrix. A practical form of equation (3.42) for flutter
analysis is a state space representation: (g must then be approximated using a

polynomial curve fit in Laplace domain.
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3.3.4 Approximation Technique for the Generalized Elastic Force

First consider three dimensional unsteady aerodynamics. The forces (g, are
generally computed at a given airspeed (or Mach number) for simple harmonic

motion and at specific values of reduced frequency k defined as

k= (3.44)

where b is the wing semichord and V' is the airspeed. Qg can be expanded into
its real part and its imaginary part as Q = Qr+j Q7. A curve fit in the Laplace
domain is found for any given reduced frequency k by using the polynomial

E—4(jk)

A . . N
Q(k) = Ao + A1 (jk) + Az (k) + Gk Bz

(3.45)

where the set {3} is arbitrarily selected from the range of reduced frequencies
for which @) has been calculated. The relevant parameter for flutter analysis is
nonetheless not the reduced frequency but the airspeed (or the Mach number).
The curve fit (3.45) is then converted into

A b
Q(V) :A0+A1— 8+A2

- Py (3.46)

using s = jw and (3.44). The coefficients {A;} for the curve fit are computed
according to [Abe79].

For each reduced frequency k;, a complex error function is formed

E' = Q(k)—Q(k) = B+ jE; (3.47a)
By = Qn+I[Bgl[C] (3.47b)
E; = Qp+[Bj[C] (3.47¢)
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where Eg is the real part of the error function and E; the imaginary part. The

coefficients [Bk] and [Bi] are obtained from expanding Q(jk) as

Q(jk) = Qr+jQr, (3.48a)
On = Ay ey AR AR A Ak

5+ 5+
A Azprk  Aabok  AsBsk AgBak

+ 3.48b
k2+ 0% K2+ 05 K2+ 3 k‘2+/5§( )

= Ak 3.48
R Ay A ANy A
and then factor using C' = [Ag A1 ... Ag]T, so that finally
1
: — k2 —k2? —k2? —k2?
B = -10k : : : : 3.49
" TR g R g, O
: —bi ki —Baki —Bski —Paki
By = 0k0 3.50
f P+ B T R (520
Then a least square fit can be passed through N points by setting
0 E' x E*)=0 3.51
aC Z':l( X )= (3.51)
The result of this differentiation is the set of normal equations
. . . . L
(Qk + [BRI[C]) By + (@ + [BlIC]) B] =0 (3.52)
i=1
Equation(3.52) is solved for the coefficient matrix [C] as
1
T onil i it *ﬁ? ir i il -
i=1 i=1

By way of illustration, let us consider the reduced quadratic curve fit for the

generalized elastic force

-

Q(V) = Ao+ A4l 51 a, s2. (3.54)

%

<[]

It should suffice for a quasi steady aerodynamics approximation, which will

provide a good first estimate for the flutter speed. The curve fit (3.54) is
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transformed back into time domain. The elastic equations of motion (3.42)

become in vector form

<]

Mﬁ—FMQﬁ:Aoﬁ—FAl ﬁ—l—Az v ﬁ (3.55)

2

i

where () is the diagonal matrix which elements are w

The state space representation is finally ascertained as
N T N Iy B

H = = ! e = el = NEET
n n

—K_l [MQ—A()] K_l Al %
where 150
b
K=M-A, v (3.57)

A further generalization is obtained when considering the complete curve fit
in (3.46). It is now a good approximation for unsteady aerodynamics. The
interest in studying the effect of the complete fit is that a lower flutter speed can
be found. It has already been the case experimentally. The drawback is that the
state space is now higher order and many "non physical” modes are introduced.
In order to solve the eigenvalue problem of (3.42), equation (3.46) needs to be

expanded as

1 11 1
DQ(V) = D%—I—Alés—i—z‘lz é SZIZIS(A3+A4+A5+A6) (358&)
with (3.58b)
1 111 111 111 1
D = S—i—%ﬁl S—i-%ﬂz S+%ﬂ3 8—0—%64 (3.58C)
= P4 by Hbys?+bs+by (3.58d)
bz = % (BL+ B2 + B3+ Ba) (3.58e)
|%| 21
by = 7 (8182 + (34 + (B + B2) (B3 + Ba)] (3.58f)
|%| a1
by = 5 (3384 (Br + B2) + B1B2(Bs + a)] (3.58g)
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bo = ? 1323334 (3.58h)

Then the state space representation is obtained by replacing (3.58) in (3.42) as

(ﬁ(4) 4 b3ﬁ(3) + bzﬁ + blﬁ + bOﬁ)(Mﬁ + MQm) (3.59)
= Ae® + As® + A7D + Agp® + Az + Ay + Ao,
where the superscript (7) means the ith derivative. Equation (3.59) is equivalently

expressed in matrix form as

1 1 1 111 1
= I 0 0 0 0 .
— 071 0 0 0 —
® 00 I 0 0 —
- — (3.60)
- 00 0 I O 7 H
O = 00 0 0 I HE®E
n® Y1 Y2 Y3 Va4 Vs Ve 7®
where
Ao = Aobo (361&)
z‘il = A3+ As+ As + Ag (361b>
b |:b“?|
Ay, = Apby + Alblv + Asbg V (361C)
b |:b“?|
z‘i3 = Apbs + Albzv + Asby V (361d>
b |:b“;|
Ay = Ao+ Abs— + Aby, — 61
4 o+ 163‘/ + Ayby % (3 6 e)
. P
As = Ml gy 2 (3.61f)
5 = Aiy; 23 7 )
'Ib“;|
m o= (MQby — Ao)/(M — Ap) (3.61h)
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Figure 3.4: Root Locus for a Quadratic Curve Fit

Yo = (MQby — Ay)/(M — Ag) (3.61i)
v3 = (M?Qboby — Ay) /(M — Ag) (3.61j)
4 = (M?*Qbibs — As)/(M — Ag) (3.61k)
5 = (M?Qby, — Ag) /(M — Ag) (3.611)
Y6 = (Mbs— As)/(M — Ag) (3.61m)

Eventual flutter can be observed through the migration of the eigenvalues.
The roots in the loci (3.4) and (3.5) originate from the undamped modes and
migrate in branches or combination of modes. When two branches coalesce at a
certain speed Vp, flutter arises. The relevant aircraft modes are summarized in

table 3.1.

A different approach is to consider the effect of the elastic deformation on the
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Number | Description Frequency (Hz) Gene. mass
R1 rigid fore-aft 0| 5.329559 1071
R2 rigid side 0| 5.329559 1071
R3 rigid plunge 0 | 5.329559 101
R4 rigid roll 0| 5.82571010°
R5 rigid pitch 0| 1.688300 10°
R6 rigid yaw 0| 7.388493 103
1 1st wing bending (sym) 1.02 1.000000
2 1st aft fuselage bending (asym) 2.26 1.000000
3 1st aft fuselage torsion 2.83 1.000000
4 1st fuselage bending (sym) 2.99 1.000000
5 1st fuselage bending (asym) 3.33 1.000000
6 1st wing yawing (sym) 4.12 1.000000
7 2nd wing bending (asym) 4.28 1.000000
8 1st tail bending (sym) 6.10 1.000000
9 2nd wing bending (asym) 6.44 1.000000
10 1st wing torsion (sym) 8.05 1.000000
11 1st wing torsion (asym) 8.79 1.000000
12 2nd aft fuselage bending (asym) 9.98 1.000000
13 2nd fuselage bending (sym) 10.18 1.000000
14 3rd wing bending (asym) 12.49 1.000000
15 1st rudder torsion (sym) 12.91 1.000000
16 1st rudder torsion (asym) 13.50 1.000000
17 1st rudder bending (sym) 12.56 1.000000
18 2nd wing yawing (asym) 14.38 1.000000
19 2nd wing yawing (sym) 15.72 1.000000
20 2nd fore fuselage bending (asym) 16.69 1.000000

Table 3.1: Relevant Rigid and Elastic Modes
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aircraft stability derivatives.

3.3.5 Estimation of Stability Derivatives

The lift and moment expansions as seen in chapter 2 can also include the elastic

modes as

Ccr = CLR+CLE (362&)
Cri = Coee + Cone (3.62b)

where Cp, and C,,, are the rigid components as in equation (2.21). The elastic
part is obtained from the real and imaginary parts of the generalized elastic force
Q. The following definitions come from the aerodynamic addition to NASTRAN.
The typical flutter problem arises from the combination of the pitch mode or
pitching moment and the plunge mode or normal force. As a first approximation,
only the effect of the longitudinal elastic modes on the lift and moment are being

considered as Cr. and C,,. are expanded into

Cre = Crym+ Crynz+ Crons + Cry,ma
+CLoy 5 + Crog e + CrLo, 17 (3.63a)
CmE = C’mmm + Cmnz 2 + Cmng 73 + Cmn4 M4

+Cmn, M5 + Crigg M6 + Crn, 117 (3.63b)

where the 7 are described in table 3.1. The coefficients are determined from

Cro = —w (3.642)
 Qr(3,i+3)
Cogy = G2 (3.64D)

where Qg is the real part of the generalized elastic force matrix, S is the wing

area and ¢ = 2b the mean aerodynamic chord.
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Figure 3.6: Effect of the first Wing Bending on the Normal Force

The effect of the elastic modes on the normal force or equivalently lift in the case
of zero angle of attack together with the effect on pitching moment are presented

in figures (3.6) through (3.17).
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CHAPTER 4

Propulsion

The equations of motion for the rigid body depend on the forces acting on
the body. If the aerodynamic forces and inertial forces relate directly to the
structural properties of the aircraft, the thrust however is obtained from a distinct
component: the propulsion system. This module is composed of a geared electric
motor, energy supplies as solar cells or batteries and a propeller. In section 4.1
the parameters values for each of these components are shown. In section 4.2 a
theoretical approach to compute thrust is used to estimate the propulsion force in

the best case. Finally the experimental data is presented for increased accuracy.

4.1 General Parameters

The motor delivers 2.5 horsepower with an efficiency of 90%. Its dynamics are
modeled as a first order system with break frequency w,, at about 3 rad, so that

the associated differential equation is
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Wout

+ Wout = V; (41)

W

where w,,; is the angular rate produced by the motor when the input voltage is

Vin-

The propeller is a 7 ft long wooden helix with 85% efficiency. For low altitude
flights however, the length of the propeller is reduced to 3 ft. The batteries
generate 4 horsepower each and are mounted in series in the fuselage. Finally if
the aircraft is solar powered, cells cover 90% of the wing area with an efficiency

of 12.5%.

4.2 Estimating Thrust
Thrust can be computed using two different approaches:

1. Momentum Theory provides thrust as a function of efficiencies and airspeed.

This is the best case.

2. Experimental data on the propeller + motor ensemble provide a thrust

coefficient as a function of airspeed and rpm.

Solar power can finally be used for the autonomous high altitude configuration.

This will be the subject of chapter 5.

4.2.1 Momentum Theory

Consider an ideal infinitively thin actuator disk with an area S which offers no

resistance to the air passing through it. It is also assumed that the velocity of the
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Figure 4.1: Ideal Infinitively Thin Actuator Disk

air through the disk is constant over the whole area. The fluid is moving uniformly
a long way ahead of the disk with a speed of V' and a pressure Fy. Streamlines
on fig(4.1) represent the envelope of the flow passing through the disk. As it
approaches the disk, the fluid accelerates to Vp and its pressure decreases to P;.
At the disk, pressure increases to P, but continuity forces the speed to remain
constant. Behind the disk, the air expands, accelerating until the pressure is back

to Py, the speed being V,. Thrust is then given from the pressure gradient as

T=SAP=S(P,—P) (4.2)

To express AP in term of the airspeed, Bernoulli’s equation is applied between

region 1 (ahead of the disk) and region 2 (behind the disk),

1 1

Po+§p VZ = P1—|—§p V02 (4.3a)
1 1

P+ ol Ve = P+ 3P V2 (4.3b)

If equations (4.3) are combined, equation (4.2) reduces to

s

1
P,—P = 50 (V2 - Vz) (4.42)

1
T = 3pS (V2 -V?) (4.4b)
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The power supplied to the disk as a function of the airspeed is deduced from
equations (4.4) as

1
W =5p SV (V2= V) (4.5)
The useful work is by definition

W,=TV (4.6)

Using (4.5) and (4.6), the efficiency of the disk is

W rv. v )
TEW TS W%(2Z-vY) W |

Replacing (4.7) in (4.5), thrust is also obtained in terms of the power supplied as

Wi

T =
Vo

(4.8)

The momentum theory provides the "best” case solution as any propulsive
system will always have less than the momentum theory efficiency 7;. Moreover
the motor characteristics need be added when computing W,. Indeed the power
supplied is globally definite in terms of the motor + propeller efficiencies and the
maximum power supplied by the motor using batteries or solar power. Let 7, be
the propeller efficiency, 7,, the motor efficiency and PT® the maximum power

supplied by the motor, then the thrust finally becomes

Ws = P™n,nn, (4.92)
Pmax m
T = mTZp" (4.9b)

Most of the time, the relevant quantity for design or performance analysis is
not the thrust itself but the thrust coefficient C'r. A simple way to relate the
thrust 7" and the thrust coefficient Cr is to derive functional expressions for 7'

Let us consider an airscrew of diameter D doing n revolutions per second at
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a linear speed V, driven by a torque () and supplying a thrust 7. The air is
characterized by its density p, its kinematic viscosity v and its modulus of bulk

elasticity K. A functional form for the thrust would then be

T =T(D,n,p,v,K,V)=C D*n’ p°v* K¢ V/ (4.10)

If a dimension analysis to find a,b,c,d,e,f is conducted, (4.10) becomes
1 1
=8 ot o, oo
D?n pD?n? n D

T=CD*n?pf (4.11)

The bracketed factors are functionals of the Mach number M, the Reynolds

number R, and the advance ratio or distance advanced by revolution J.

T =C D*n? p h(R., M, J) (4.12)

The constant C' and the function A(-,-,-) are usually collected together to form

the thrust coefficient C'r. Hence

T =Cpr D*n?p (4.13)

If the thrust is expressed in terms of dynamic pressure (4.13) becomes

q = %pvz (4.14a)
V = Dn (4.14b)
T = (2¢D? Cr (4.14c)

4.2.2 Experimental Data

Consider the functional for the thrust coefficient, where C'r depends on the
airscrew design, the Mach number M the Reynolds number R, and the advance

ratio J. The dependencies are found experimentally in terms of airspeed and
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Figure 4.2: Experimental Approximation for the Thrust Coefficient

rpm: the flight range of the aircraft is well within incompressible flow,the relevant
parameter is not really Mach number and Reynolds number but simply airspeed
and similarly rpm is more commonly used than advance ratio. The results are

plotted in figure (4.2).

Cr = h(R., M,.J) (4.15)

Cr = h(rpm,V) (4.16)
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CHAPTER 5

Solar Powered Propulsion

A special addition to the aircraft model is the solar powered configuration. The
use of solar energy was not meant for the baseline prototype but represents a long
term feature for autonomous flight. The aircraft wings are modified to be covered
at 90% with light and flexible solar panels. Based on available technology, the

solar cells have a 12.5% efficiency.

The power available from solar energy is determined by projecting the solar
incidence vector onto the normal to the wing. The result is the power supplied
by the motor. Finally, thrust is obtained using momentum theory as explained
in chapter 4. For simplicity, the wing is assumed to be a flat rigid plate, so that
camber, dihedral and structural modes can be neglected. The derivation of the
solar incidence vector towards the Earth is defined in the Ptolemaic point of view,
so that the Sun rotates around a fixed Earth. First the transformations between

the different coordinate systems are ascertained.
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Figure 5.1: Heliocentric-Ecliptic (Global) Coordinate system

5.1 Systems of Coordinates

To describe the relative position of the sun and the aircraft to the Earth, three

coordinate systems are needed [BMWT1].

5.1.1 Heliocentric-Ecliptic Coordinates

The heliocentric-ecliptic coordinate system or also called global coordinate system
I is sun centered with the (7, l%) plane defining the ecliptic, or the plane of the
Earth revolution around the sun. The direction of j is defined by the line of
intersection between the ecliptic and the Earth equatorial plane as shown in

figure (5.1).
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Figure 5.2:  Topocentric Right Ascension/Declination (Local Horizontal)

Coordinate system

5.1.2 Topocentric Right Ascension/Declination Coordinates

The topocentric right ascension/declination coordinate system or also called local
horizontal frame is closely related to the traditional geocentric equatorial axis
system: X}, is oriented North. The plane (Y}, Z) is parallel to the equatorial
plane with Y}, oriented East and Z;, West as shown in figure (5.2).

5.1.3 Body Axis Coordinates

The body axis coordinate system is fixed to the aircraft and centered at the
gravity center. X is aligned with the fuselage and points forwards, Z is positive

downwards and Y comes out of the right wing as shown in figure (5.3).
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Figure 5.3: Aircraft Body Axis system

5.2 Deriving Solar Incidence in Body Axes

To describe the sun’s virtual motion in the Local Horizontal frame, three rotations

are considered (fig. 5.4):

1. Rotation around j of angle §.
The declination angle  represents the inclination of the Earth equatorial
plane with respect to the ecliptic. Declination depends on the season. For
example it is positive for summer in the northern hemisphere.

This rotation transforms (i, j, k) into (X1, j, Z1).

2. Rotation around X3 of angle 1.
The longitude angle ¢ is measured eastwards in the equatorial plane from
Y. v depends on the time of day due to Earth’s rotation.
This rotation transforms (X7, j, Z1) into (X1,Y, Z1).

3. Rotation around Y of angle .

The latitude A is the elevation angle from the equatorial plane. Latitude is
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Figure 5.4: Declination, longitude and latitude angle definition

positive for the northern hemisphere. In our case, the latitude is fixed to
34°N since it is approximately the latitude of Los Angeles.
This last rotation transforms (X1,Y, Z;) into (X,Y, 7).

Hence the transformation H between the global and the local horizontal
coordinates can be determined from the multiplication of these three fundamental

matrices as

1 [T11 LIT1 1
s6 0 —sind 4 0 0 qosA 0 —sinA
H = g 10 { costp  siny) [ 10 E (5.1)
sind 0 cosd —sinyy 0 cosy sinA 0 cosA

If the computations are carried out, equation (5.1) becomes
1 1

s\ cosd — sinA cosysind  sinA singy — cosA sind — sinA cosy cosd

n sind cosy sin) cosd

sin\ cosd + cosA cosysind  — cosAsing  — sinAsind + cos cosy cosd
(5.2)
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As the distance between the Earth and the Sun is large compared to their
radius, solar rays can be approximated by vectors pointing along k. Therefore,
only the last column of H is necessary to obtain the sun attitude in the body

axes (X,Y,Z) as
1 1

cos Asin d — sin A cos ) cos §
S = E sin v cos 0 E (5.3)

—sin Asin d 4 cos A cos ) cos &

The solar incidence is the angle between the normal to the wing and the solar
attitude vector S. As a first approximation, wing camber, dihedral, and bending
are neglected, so that the wing is just a flat plate with a unique normal. The solar
attitude vector S is converted in the body axes using the matrix transformation

T in section 2.1 as

ll

=T.5 (5.4)

The unit normal to the wing in the body axes is by definition [0,0,1]7. The
solar incidence is finally determined from the dot product between the normal

and equation (5.4) as:

s = (sintsing + cossinf cos ¢)(— cos Asin § — sin A cos 1) cos §)
+ (— cos ) sin ¢ + sin ) sin 0 cos ¢) sin ) cos § (5.5)
+ cosfcos ¢ (—sin Asind + cos A cos ) cos 6)

To implement equation (5.5) in a dynamic simulation, the declination 0 is related
to the season and the longitude ¢ to the time of day. The former relation is
obtained by assimilating the year to a circle with the correcting factor k=360/365.
Then the seasons, separated by equinoxes and soltices, are defined as 0 for spring,
270 for summer, 180 for fall and 90 for winter. The latter relation follows from

the longitude angle increase of 15° per hour from the take off (TO) time.
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In summary,

9 = 0/90/180 /270 (5.6a)
t ™

= (T ——) 15°— .6b

(0 (Tro + 3600) 5 130 (5.6b)

A = 34° (5.6¢)

Once the solar incidence s is computed, a correction for atmospheric absorption

needs to be added as:

1 1
s = = 6—0.65c_|_6—0.095c (57&)
1
= 122 14 s)2 — 614 .7b
c 9+ (61457 — 6145 (5.7b)

where P is the pressure. Finally § is converted in Watts, so that for a 90% wing

coverage and 12.5% solar cell efficiency, the power generated is

90 125

— (1965 s) —— %2

P (1265 5) 755 To0
PR
745

with p in watts and p its horsepower equivalent. Finally, using the momentum

theory, the maximum power supplied by the propulsive system is
Pmax — p T]m np

where 7,, and 7, are the efficiencies of the motor and the propeller. The thrust

is then
Pmax

T
v
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CHAPTER 6

Sensors and Actuators Models

6.1 Actuation

Actuated surfaces on the aircraft are the wings and the tails. The controls are
formed by the wing tip actuators which twist the whole wing and the tail actuators
which make the rudder-elevator pivot. The wing twists are only asymmetric to
generate roll whereas rudder-elevator motions are both symmetric and asymmetric
to create pitch and yaw respectively. Both wing tip and tail actuators are modeled
as first order systems with a break frequency w, of 4rad, so that the governing

differential equation is '
Aout

Wa

—|— Aout — Am (61)

where A represents the angular deflection of the control surface.
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Sensor Location | Sensor Type

wing tip vertical accelerometer

tail vertical and lateral accelerometers
center of gravity | vertical, lateral and forward
accelerometers and gyroscopes
wing leading edge | o and (3 probes

nose airspeed helix

motor load cell

Table 6.1: Location of Sensors

6.2 Sensors

The equations of motion provide ”exact” values for the aircraft states. Practically,
most of the states are measured from sensors. A list of the available measurements
on the baseline is given in table 6.2. The sensors include accelerometers, gyroscopes
and air data boom. To be closer to reality, the measurements are corrupted by

band limited noise as explained in section 6.2.2.

6.2.1 Sensor Measurements
6.2.2 Sensor Noise

The measurements are corrupted by added limited noise or colored noise to be
closer to the real instrumentation performance. The statistics associated with
each measurement noise are shown in table 6.3. This noise is obtained by passing
a zero mean purely random process or white noise process through a shaping

filter as

n=-Am — wy,)
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Longitudinal sensors measures | Lateral sensors measures
Normal acceleration Lateral acceleration
Forward acceleration Sideslip

Angle of Attack Roll rate

Pitch rate Yaw rate

Pitch angle Roll angle

Altitude Heading angle

Table 6.2: List of Measurement Available on the Baseline

> N

Yp

(Xp»Yp:Zb)

Nb‘
X
Y

Figure 6.1: Accelerometer position in the body axes
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Sensor Measure Bandwidth | Variance
Accelerations 50 hz 0.0001 Sfe t;
Angular rates 50 hz 0.0001?2@;
Inertial Angles and position | 10 hz 0.04626502
Air Data («, ) 10 hz 1d:egcz

Table 6.3: Measurement Noise Statistics

where A is the bandwidth in hertz and w,, the white noise input.

6.2.3 Modeling Noisy Measurements

By way of illustration, let us consider accelerometer measurements. If 7 represents

the vector of all measurements, then 7 is related to the states as:
y=0CT + 7

where 7 is the associated measurement noise as described in section 6.2.2.

6.2.3.1 Longitudinal Mode - Normal and Forward Accelerations

1
Az
Ax
t
q
Tl

where A, is the normal acceleration, A, the forward acceleration, oy = «; + o is

The measurement vector 7 is defined by
1

z

T

<
I

[T O

[T O

the total angle of attack, ¢ the pitch rate and 6 the pitch angle. The vector 7 is

the measurement noise vector. Since the angle of attack o = w/V/, the pitch rate
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q and the pitch angle 6 are already states, an expression for 7 is straightforward

as soon as the accelerations are derived as

1 1
Cu 1 [
Ca,
y= 1V 0 0 7
0O 10
0
0O 0 01

where V' is the craft airspeed.

The accelerometer position is denoted (zy, ;) in the body axes (X,, Y, Z;) as
shown in figure (6.1). The aircraft center of gravity has (x,y, z) for coordinate in
the inertial frame. The acceleration is the sum of the acceleration at the center

of gravity and the relative acceleration at the accelerometer as

B dg L L d2 o o . __
. ﬁ(EO + OP) = ﬁ(:pX + 27 + 1, Xp + 2pZs) (6.2)

with the linear approximations 6 = q, * = u and Z = w, equation (6.2) becomes
a= (4 qw— ¢z + ¢2) Xp + (0 — qu — ¢*z — Ga3) Zp (6.3)

where u is the longitudinal speed and w the vertical speed. The inertial angle of

attack «; is related to u and w as

w~wua; for small o, so that w ~ ud;

Hence, if @ = A, X, + A, Z, in g unit, the acceleration components are obtained
by inspection of equation (6.3) as

(4 + q uey; — ¢®xp + Gzp)
g

(ud; — q u— ¢%zp — qp)
g

4, =

A, =
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where ¢ is the gravity at sea level. The sensor outputs are then fed into the
autopilot. However, the autopilot input is not directly measurements but small
perturbations from reference values obtained after trim and denoted by a 0

subscript as

@ = o, +d (6.4a)
&G = d (6.4b)
u = wup+u (6.4¢)
0 = @ (6.4d)
¢ = q+q (6.4e)
g = ¢ (6.4f)

Finally, the noisy perturbed accelerations are approximated to first order as

. / 12 o

Ax _ (U +q UOOKmQ q $b+qzb) + NAy (65&)
upy; — ¢ up — q?z — 'z

4 - (wdi—g ogq v dm) (6.5b)

6.2.3.2 Lateral Mode - Lateral Acceleration

We proceed similarly with the lateral accelerometer described by (zy, ) in the

body axes. The measurement vector 7 is
1 1 1

<

~

<
i
o LTHTTH T

[T

oo

7



where (3 is the total sideslip 8, = 3; + 4, p the roll rate, r the yaw rate, ¢ the
bank angle and v the heading angle. The acceleration is given by
2

a= @((ﬁw?mbx_ﬁybﬁ) (6.6)

using the linear approximations r = ¢, # =wu and y = v, equation (6.6) becomes
a=(U—ryp—r(v+rz) Xp+ O +rz, +r(ut+ry) Y, (6.7)

where v is the lateral speed and is approximated by v ~ upf3;. The acceleration
components finally are

2

(W — 7"y — r'ugfy, — r’"xy)

A, = P + Nax (6.8a)
uofi + ' + r'ug — 1'%y
4, = : p oW (6.8b)
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CHAPTER 7

Atmospheric Turbulence

The simulation would not represent accurate flight conditions without a turbulence
model. Indeed, the very light structure of the aircraft is very sensitive to winds.
Atmospheric turbulence can be decomposed into two parts: steady winds and
gusts. The gusts then consist in continuous turbulence or discrete gusts at a

specific frequency.

For simulation purposes, the atmospheric turbulence is restrained to continuous
wind gusts. The statistical description of such a stochastic process leads to
the derivation of Bryson wind gust model which provides differential stochastic
equations for continuous 3-D wind gust. This model is then combined with
the military specifications on continuous turbulence for low and medium/high

altitude. In further studies, discrete gusts will be used to test the aircraft
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structural response when specific modes are excited. Finally some model limits
are stated when the atmospheric layers properties are considered. First let us

emphasize the need for a stochastic model of continuous turbulence.

The detailed structure of a well developed turbulent flow appears to be not
measurable,unpredictable, and even indescribable because of its complexity. The
flow follows nonetheless the Navier-Stockes differential equations of fluid dynamics
and still appears to be evolving in a random fashion. Therefore, statistical
techniques can be applied to characterize the flow motion. The introduction
of statistics is only due to our limited abilities and not because of inherent
randomness. What really happens in a turbulent flow is that the velocity at
one point is a consequence of so many complex interactions between the velocity
components themselves and the turbulent structures of all sizes that it has the
nature of a random variable. Thus the statistical approach gives us predictable

quantities.

The wind turbulence model combines two fundamental elements: a white
noise input shaped according to the mil-spec-F-8587C and dynamics defined by
Bryson’s model. A detailed description of necessary tools to study stochastic

processes is provided in appendix B.

7.1 Military Specifications for Noise Input

Mil-F-8785C [Ano80] provides statistical characteristics for the wind turbulence
input. In particular, magnitude for continuous turbulence and discrete gusts is

given in terms of standard deviation as a function of altitude and gust strength:
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light, moderate or severe). However, no dynamics are discussed.

7.1.1 Continuous and Discrete Turbulence Spectra

For the continuous model of turbulence, two principal forms are encountered: the
Von Karman form and the Dryden Form. When feasible, the Von Karman form
should be preferred in order to get a correspondence between the flying qualities
and the structural analyses. If the Von Karman form is not feasible, or when no
structural studies are carried out in parallel, the Dryden form can be used.

The Von Karman spectra are given by :

,2L, 1

d,,(Q " 7.1a
o) T 1+ (1.339L,0)2>/* (7-1a)
L, 1 1.339L,0)2
0,(Q) = op— + 8/5(1.339 13/6 (7.1b)
T [1+ (1.339L,0)?]
Ly 1 1.339L,,2)?
Byy(Q) = o2le LESBUIOLIL (7.10)
T [14 (1.339L,)?]
The Dryden Spectra are given by :
2L 1
— 24y
L, 1 L,Q)?
T [T+ (Lof2)?]
Ly 1+ 3(L,0Q)?
Duy(Q) = o — ( Z (7.2¢)

Y [ (Lo

The discrete gust model v = f(x) has the "1 — cos” shape, but ramp and step
functions can also be used. The scales and intensities of this model should be

taken equal to those in the Dryden model, so that

v=20 z <0

1 1
’U:VTm 1—cos% 0<z<d,
v="V,, T >d,,
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This model is useful to assess the aircraft response in case of large disturbances.
It can be used singly or in multiples. d,, shall be used in order to tune each of the
craft natural frequencies and the flight control system frequencies, maybe with
the exception of the higher structural modes. For severe intensities, modes with
wavelength less than the length scale can be used.
However, discrete gusts have not been implemented yet. Further study on the
excitable modes should be carried out. Model parameters consist in the length

scale L or d,, and the gust magnitude o or V,,.

7.1.2 Medium/High Atmosphere Parameters

The main assumption for these altitudes is that after 2,000 ft, isotropy prevails.

Therefore,
Ou = 0y, =0y

L, = L,=1L,

The length scales are constant with altitude and depend only on the spectra form

chosen as

L; = 2,500 ft for the Von Karman form

L; = 1,750 ft for the Dryden form

The root-mean-square (RMS) standard deviation o depends on altitude as

shown in figure (7.1).

7.1.3 Low Altitude Parameters

The low altitude model is valid for all operations in category C, that is terminal

flight phases such as
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1. take off (TO)

2. catapult take off (CT)

3. approach (PA)

4. wave off - go around (WO)

5. landing (L)

Low altitude wind profile is characterized by wind shear effects. The isotropy
hypothesis is non valid and the gaussian approximation can lead to errors. The

scalar wind shear is obtained from the logarithmic profile [PD84] as

where

zo = 0.15 ft for all category C flight phases

zo = 0.2 ft for all other flight phases

Uy is the mean wind velocity at 20 ft and depends on probability of exceedance

as shown in figure (7.2).

The standard deviation is finally determined as
Oy — 0.1U20

with o, and o, are functions of o, and altitude.

7.2 Continuous Turbulence Dynamics

The gusts dynamics are derived following Bryson’s or Dryden’s model. Section 7.2.1

presents the hypotheses, then the model is derived in section 7.2.2.
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Figure 7.1: High Altitude Turbulence Intensity
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Figure 7.2: Low Altitude Turbulence Intensity
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7.2.1 Hypotheses for Wind Turbulence Modeling

The model assumes a statistical description of the wind gust velocity as in
chapter B, and follows [HB77]. The wind gust velocity is considered to be
a random vector at each point in space and time and the distributions are
approximated as Gaussian.

The hypotheses for the flow field are

Stationarity This assumption means for a stochastic process that the mean
value vector is time invariant and the correlation functions only depend on
time separation. This approximation is valid for time scales less than a few

minutes.

Frozen Field This assumption implies that the wind velocity is random vector
field whose correlations depend only on spatial separation. Indeed, the
correlations between wind gust velocity components at points fixed to the
mean air motion at a given time separation 7 is greater than the correlation
between points separated by the distance V7. This assumption is valid

when V' > U/3 where U is the mean wind speed.

Homogeneity This is the spatial equivalent to stationarity. In the atmosphere,
free turbulence is approximately homogeneous in all directions, whereas
near the ground the wind gusts vary with altitude. If we assume however
that the terrain is relatively uniform, the homogeneity hypothesis becomes

valid.

Nearly Horizontal Flight This assumption has been made to drop the effects
of vertical separations compared the to corresponding horizontal separations.

It is expected that for flight path angles less than ten degrees, the error
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induced by only considering horizontal separations will be less than one

percent of the variance.

Isotropy This assumption states that there is no dependence of the random
vector field upon the orientation of the coordinate system. Measurements
in the atmosphere indicate that above the lowest surface layer, the wind
gust velocity is very nearly isotropic, validating this hypothesis for heights
above 2000 ft. For lower altitudes, the variance and scale of the vertical
gust are smaller than the ones of the horizontal components, moreover
the correlation between horizontal and vertical gusts is not any more zero.
Specifically, large scale length mechanisms inducing turbulent energy, such
as mean wind shear and thermal buoyancy are truly anisotropic. A better
assumption than complete homogeneity introduces locally homogeneous

increments in the stochastic field.

Similarity Hypothesis This assumption concerns the parameters determining
the structure of a flow field. The scale variation function with respect to
height should be considered different at low altitudes where the flow is not

isotropic and at high altitudes where the isotropic hypothesis becomes valid.

7.2.2 Bryson’s Model

First let us define the following nomenclature
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h | Height (ft)

u | Longitudinal component of the aircraft velocity (ft/s)
L | Integral scale / scale length function (ft)

b | Wing span (ft)

(G | Aircraft size parameter

t | time (s)

dt | integration step (s)
x | Longitudinal separation (ft)

o | Rms gust velocity (ft/s)

n | Zero-mean white noise process

The model deals in general with white noise inputs to dynamic systems . The
output is an approximation of the gust and gust gradients in the sense that their
correlations along the flight path are nearly the same. Let the system dynamics
be

X=FX+1Iyp (7.3)

where 7 is a zero mean white noise process with correlation of the form
En(t)n(t2)"] = QIs(t1 — t2) (7.4)

where @ is called power spectral density. The state covariance x(t) can be

determined from

x = Fx+xFT + 1" (7.5)

and the correlation function from

Cltto) = FCO(tto); Ctt)=x (7.62)

C(t, 1) E[X(t)X (to)"] and t > tg (7.6b)
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Integration of equation (7.6) yields

Clta to) — Clioto) = F 11 C(t,to)dt (7.7a)
F =[Oty to) — Clto o)l 1 C(t, to)dt] ™ (7.7b)

In short, given a correlation function C'(tq,tg), the scheme is to compute F from
equations (7.7) and then obtain I' using equation (7.5). For convenience I' is

chosen to be upper triangular.

This procedure is now applied to the wind gust and wind gust gradients.
Their components can be divided into four uncorrelated groups Up, (Wy, W),
(Vo, Vi, Uy), W,r. The appropriate F' and I matrices are computed using (7.5),
(7.6), (7.7) and a correlation function of the Karman form. The integration
interval chosen is four times the scale variation L, so that the results are quite

insensitive to small changes in the interval length.

7.2.2.1 Global Longitudinal and Lateral Models

Equation (7.3) is expanded for the gust and gust gradients as

1 1 1 1T 1 11 1
5 o 1 fi2 fi3 o 12 ms o
T |‘7h
ol e il b1 f22 23 e Y22 V23 a)
1 72
Uo far fa2 fa3 Uo V32 V33
—1 1 1 CIT—1 1
Yo 11 fio fiz fua Yo
0 W, ] b1 fo f23 foa Y (7.8b)
Or y 51 fa2 faz faa L,
W, far fao faz faa W,

!The symbol = here stands for the distance along the flight path and not the state. The
subscripts 0,  and y mean averaged uniform, longitudinal gradient and lateral gradient (resp.).
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1 1
12 Y13 714 __':' —

Ui
22 723 724

+ I
32 V33 V34

1 73
Y42 Va3 V44

E[U(%)WT(IZ)] = QI 5($1—I2)

(7.8¢)

(7.8)

If numerical results are examined, fi1, fis, fia, f23, foa, fa2, faa, fa1, fa2, fa3, 112,

V13, Y14, Y24, V32, V34, Va2, Va3 are zeros, fip is approximated to 1 as expected and

f21, f22, 722 are the same for both longitudinal and lateral models. For the other

coefficients, functions are found to match closely the numerical results by using

a least squares fit of a function of the general form

ot a3
g+ agfBos

Finally the global model is given by
1 1 1

11X/
1o

0

% |x 1= 21
Uo 0

1 [ [

Yo

0 e

Ox g, i
Wy

with

f(B)

1
f22

0

[N I N I BN f B

1
14

0

]

A 9

Uo

0

0
2 0

733

o1 .1

+

B

L1 7)3

(14 B
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fool = —0.5(1+33)3%3

fel = —(1+1.58)%31+3p)™"
fl = —04(1+23)37"
fas = 1.5f33
Y2 = —fa
voal? = —0.235743
Y3 = —l.4fs3

YsL® = 13337

yal? = 167571

where the aircraft size parameter 3 and the length scale L are defined as

b

b= 3
h hg

L = =2 =0.
k:h+h0 ho = 2500 ft k=08

L = kh for low altitude

7.2.2.2 Simplified Longitudinal and Lateral Model

For a small aircraft, lateral wind gust gradients are negligible, so only the following
groups are needed: Uy, (Wo, W), (Vo, V). The wind velocity in the longitudinal
direction is deduced from a first order differential equation, whereas for both
lateral and vertical directions the governing differential equations are second

order, so that

%Uw = fa3Uw + 7337 (7.10a)
02 0
@Vw = faVu+ fzza—wi + Y221y, + Y237y, (7.10b)
0? 0
@Ww = faW, + fzzaWw + Y2212 (7.10c¢)
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The white noise process 7,, and 7,, are independent and normally distributed.
Since adding two gaussian distributions results in a gaussian distribution, the

lateral white noise term can be simplified to (722 + va3)7,-

This wind gust model uses the spatial variable x as the independent variable.
For flight simulation it is more convenient to solve time varying wind gusts. The
transformation is done using the inertial aircraft longitudinal velocity u and the
chain rule

o) dxr  0(-)

o)
% 0w @ or " (7.11)

Equations (7.10) then become

oU

5 = WsUturmw (7.12a)
A% oV
e w faV + ufor g+ u? (Y22 + 723) Wy (7.12b)
PW oW

o u? fa W + Ufzzﬁ + U2 w. (7.12c)

Then [Ano80] is used to find the power spectral density for the white noise

inputs in terms of the model parameters as

f33 2

QUJX = _2 xT 713&
Uu 7%3 ( )
fo1 f22 2
w = 2———0 7.13b
oy u (Y2 +723)2 Y ( )
Q. = 212 Jzzz o? (7.13¢)
U 722

Finally, miscellaneous remarks on the structure of the atmospheric layers help

keep in mind the restrictions on the model.
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7.3 Atmospheric Layer Structure

Each atmospheric layer has its own characteristics concerning turbulence, so that
some restrictions or simplifications can apply for a more realistic simulation of

wind gusts.

7.3.1 The Planetary Boundary Layer

The Planetary Boundary Layer is usually the first kilometer of the atmosphere.
This region is completely turbulent over day and quite calm over night. The
scale height of the turbulence highly depends on the terrain, the season and
the daytime. Moreover, the flow in the PBL can no longer be described as an
isotropic phenomenon as the correlation between longitudinal and vertical flows
is no longer zero and the scale and distribution of the vertical component are
smaller than the scale and distribution of the longitudinal one.

Panofsky [PD84] proposes to extend the logarithmic profile of the wind in the
PBL to different coefficients for each distribution, so as to model an anisotropic

3D flow.

7.3.2 Free Atmosphere

The free atmosphere is the region just above the PBL and goes up to the lower
stratosphere. There is basically no turbulence but just mean wind (ex. the Jet

Stream).

7.3.3 High Altitude

The High Altitude domain represents the lower and upper part of the stratosphere.

The frequency of the turbulence goes down very quickly. However, the turbulent
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flow has no longer a gaussian behavior and, as a result, extreme values can
happen more than predicted. Reeves [Ree] proposed a simulation for non gaussian

behavior.
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CHAPTER 8

Linearized Equations of Motion for

Simulation Validation

The 6 degree of freedom non linear equations of motion are linearized about a
reference state vector Xp in order to provide an independently derived analytical
linear model. The nonlinear equations are decoupled into three groups: three
equations for positioning, four equations for longitudinal motion and five equations
for lateral motion. The dynamics of the airplane only depend on the last two
groups, positioning considerations are thus dropped. This model is used to
validate the nonlinear simulation when the motion stays in the linear range.
The equations of motion are also linearized for an arbitrary reference state in
section 8.1.4 for completeness and account for the moment translation to the

center of gravity when the static margin is non zero. As derived in chapter 2, the
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nonlinear equations of motion are

¢ = p+tanfd(gsing + rcos ) (8.1a)
6 = qcosd—rsing (8.1b)
v = p— (gsin ¢ + r cos @) (8.1c)
@ = X+ gcosfcosp — qu +rv (8.1d)
v = Y 4 gcosfsing — ru+ pw (8.1e)
=1 W= Zlill—gcose_pv_l_quﬂiﬂ - (8.1f)

wa _[xy _Imz :

N I, -L, L. 7

1 11 11 1
I(E{E _[xy _Imz
r —1, —I, I.. r

where X, Y, Z, L, M and N are the body axis force and moment resultants

scaled by the mass.

8.1 Independent Analytical Linear Model

Prior to linearization the notations need be lain down. The subscript 0 denotes
a reference quantity about which the linearization is done. As examples, forces

and states are perturbed as follows

F = FR+F (8.2a)

= Xo+X (8.2b)

The reference state Xj is obtained after trim so that
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1. There is no lateral motion: y =¢p=F=v =0
2. There is no acceleration: p=g=7r=20

3. There are no forces and moments: X =Y =Z2=L=M=N =0
Equations (8.1) are perturbed from the reference as denoted in (8.2)

(bo+¢) = (po+p)

+ tan(bo + 0)[(qo0 + q) sin(¢o + ¢)

+(ro + 7) cos(¢o + ¢)] (8.3a)
(6o +0) = (g0 +q)cos(¢o + @) — (ro +7) sin(go + ¢) (8.3b)
o+ 1) = gl Dsin(io+ 9
+(ro + 7) cos(¢po + ¢)] (8.3¢)
(uo+1) = (Xo+ X)+ gcos(fo+ 0) cos(do + &)
—(qo + q)(wo + @) + (ro +7)(vo + ) (8.3d)
(vo+0) = (Yo+Y)+ gcos(fo + 0)sin(go + &)
—(ro + 7)(uo + @) + (po + p)(wo + w) (8.3¢)
(wo+ @) = (Zo+ Z)+ gcos(fo + 0)
- T+ p)(o+ 1)+ (g a) (w0 + 4 (8.3f)
o+ L Lw —lyy —Io. o+ D)
lo + M E: EIW Iy —1L: Fo+q) E
No+ N —Ly Ly L. (ro+7)
1 I | I i 1
o+ D Lop —Ipy —1Ip. o+ P
+ %a +q %EIW Ly, —1,. Fdo+q Eéﬁg)
ro+ T —1., I, L. ro+T

Replacing the reference states by their values and dropping the superscript on
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the perturbed values, equations (8.3) become

¢ = p-+tan(fy +0)(gsin ¢ + r cos ) (8.4a)
0 = gcos¢—rsing (8.4Db)
. 1
p— _— 1 -4
0 o5 0) (gsin ¢ + rcos ) (8.4c)
i = X+ gcos(fp + 0)cos ¢ — q(wo + w) + 1v (8.4d)
b = Y 4 gcos(by+ 0)sin ¢ — r(ug + u) + plwe + w) (8.4e)
=1 W= le—il— gcos(fp +6) — va—lz—lg(ilii_l—i- u) (8.4f)
I(E{E _[xy _]mz :
N _]zm _Izy ]zz T
1 CaCcd o 1
[:c:c Ixy Ixz
- % EEI‘” Ly —I. E (8.4g)
r _]zm [zy Izz r
The trigonometric functions are linearized as
cos(fp +0) = cosbycosf — sinbysinf = cos by — 0sin by (8.5a)
sin(fp +60) = cosbysinb + sin by cos = 0 cos by + sin b (8.5Db)
t
tan(f + 0) — tan 6y + tan 6 tanty + 0 (8.50)

1+ tanfptand - 1+ O tan 6y

Neglecting second order terms and using the small angle approximation, (8.4)

finally reduces to

¢ = p+rtanby (8.6a)

0 = ¢ (8.6b)
r

v = cos g (8.6¢)

i = X+ g(cosby — Osinby) — quyg (8.6d)
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o= Y+ go cos g — rug + pwo (8.6e)

w = leJrg (cos By — QSIHHOEﬁﬂub (8.6f)

I:I
Ixy [:cz P
E: I, —I1,. E (8.6g)
N

- z:c _Izy Izz r

The purpose of linearization is to rewrite the equations of motion with the

form

T = AT + Bu (8.7)

where T is the state vector and @ the control vector. To obtain equation (8.7),
forces and moments must now also be expressed in terms of the states and

controls. A partial differential expansion is used as

X = Xou+ X,w+ qu + X0 + X560 (8.8a)
7 = Zyau+ Zyw+ qu + Zy0 + Zso (8.8b)
M = Myu+ Myw+ Mg+ Mg + Msd (8.8¢)
Y = Y+ Yp+ Y+ Yo+ Yyt + Yso (8.8d)
L = Lo+ Lyp+ L+ Led+ Ly + Lsd (8.8e)
N = Nyw+ Nyp+ N+ Nyp + Nytp + Nso (8.8f)

In the linearization process, longitudinal and lateral motions are completely
decoupled. The partial derivatives are determined from the stability derivatives.

Hence forces and moments need be transferred back to the stability axes as

I:I 1 1 111 1
sfcosa —cosasinff —sina D
E: g sin 3 cos 3 0 /atE (8.9a)
sinacos3 —sinasinff  cosa —L
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— . 111

1
sfcosa —cosasinfl —sina l
% E: g sin 3 cos 3 0 . E (8.9b)

sinacos3 —sinasinff  cosa n

8.1.1 Longitudinal Model

To stay consistent with the linearization hypotheses, the small angle approximation

is also used for the angle of attack o and the sideslip angle 8 so that

(8.10a)

a =

B = (8.10D)

Sleg |

For simplicity, let us introduce the dynamic pressure ¢ = % p V2. The partial

derivatives of the forces and moments are evaluated as follows

8.1.1.1 Find the u derivatives

~u = 8( D — ﬁl&t—l—OéL):gl? S ( CD—ﬁCY—FOéCL)
8u I:I ou 9
. 0 0
. = —2 (~Cp — B0y +aC) + 38 5-(~ CD—ﬁCy+aCL)a—a
I:Z‘Z_l |:| v
~u = — CD—I-OéCL)—I-QS( CDQ‘I’CL‘I’OZCLG)U—QZU (8.11&)
~u = %(—O&D — aﬂlat - L) = % IﬁVZS ( OACD - OéﬂCy - CL)
_ '77' ] ) )
. 75 (-aCp —aBCy = C1) + 45 5-(~aCp — afCy CL)aO‘
) |:| Cw u
v = — OéCD—CL)—l-qS( OACDG _CLG)? (811b>
- ) o , !
M, = (61 +m) = — —pVZSC (BC, + Cy)
ou . ou
- 0 0
M, = gSc —Z (BC1+ Crn) + @Se—(BCi + C) 22
- Ou
~ u —Ww
M, = gSc V2 Cr + ¢ScChq ( >) (8.11c)
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8.1.1.2 Find the w derivatives

~w = 8( D—ﬁlat+aL):il? S ( CD—/@OY‘FO(CL)
0 I%I 1 ow 2
. 0 0
w = @S = (=Cp—BCy +aCL)+3S 5(=Cp = ACy + aCyp)
I#I 1 o X ow
~w = qS V2 (—CD—I-(ICL)—FCIS( CDG_‘_CL_I_QCLQ)E (8.12&)
~w = i(—OéD — aﬁlat - L) = i ﬁVZS ( OACD - aﬂCy - CL)
8w|§l 1 ow
N 0 0
w = @5 = (~aCp—aBCy —Cy) + @5 -(~aCp — aBCy — CL)80‘
'3;' — 1
w = (S VZ (—CYCD - CL) + CjS(—OéCDa - CLG)E (812b>
- o ', =]
M, = —(6l +m)=— —pV3Sc (BC;+C,)
ow I%I 1 ow 2 5 5
M, = GSc = (BCi+Cy) +qScm—(5C; + Cpy) o
1 ' Ox ow
~ _ w _
M, = ¢Sc V2 Cn + qSCCm”(E) (8.12¢)
8.1.1.3 Find the q derivatives
X, = @S(-Cp, +aCy,) (8.13a)
Zy = @S(—aCp, —Cf,) (8.13b)
M, = GSc(Cp,) (8.13c)
8.1.1.4 Find the ¢ derivatives
X; = GS(—Cp, +aCyr,) (8.14a)
Zs = GS(—a Cp, — CLy) (8.14b)
Ms = GSc(Chy) (8.14c)
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8.1.2 Lateral Model

We proceed similarly to the longitudinal model using the dynamic pressure ¢ = % pV2.

8.1.2.1 Find the v derivatives

L1
Y, = 2(—ﬁD + lat) = 9 I%/I)VZS (—BCp + Cy)
v v 2
L 0 op
v = g5 V2 (— ﬁCD“‘CY)‘I'qS%( 5CD+CY)8
- 1
» = qS(=Cp+ CYB)E (8.15a)
1
L, = 2(l — pm —an) = 9 I%;VZSZ? (C,— BCy, — aCy,)
Ov 5] £ dv 2
) o0 B 08
L, = ¢Sb 72 (C,— pC — O)+q5b8ﬁ( l—ﬁC’m—aCn)%
L, = qSb(Cy, — Cpy — ocnﬁ)l (8.15b)
s
N, = a(al—aﬁmjtn):g —pV2Sh (aCl—aﬁC +C)
v @ 1 ov 2
_— 0 os]
, = ¢Sb — (aCy— aBC,, + C,) + ¢Sb %(aCl —afBC, +C, )8u
N, = qu(ozC'lB —aC,, + Cnﬁ)% (8.15¢)
8.1.2.2 Find the p derivatives
, = gSCy, (8.16a)
L, = @Sb(C;, —aC,,) (8.16b)
N, = Sb(aCy, +C,,) (8.16¢)
8.1.2.3 Find the r derivatives
Y, = GSCy, (8.17a)

111



e
3
I

gsb(Cy, — aC,,) (8.17b)
N, = gSb(aC, +C,,) (8.17¢)

8.1.2.4 Find the ¢ derivatives

Ys = qSCy; (8.18a)
Ls = gSb(Cy — aC,,) (8.18h)
N5 = gSh(aCy, + Cy,) (8.18c¢)

8.1.3 Drag and Thrust
The drag partial derivatives are determined from the polar equation

CD:CD0+CDi+K<CL—CKL)2 (8.19)

The partial differentials are obtained from equation (8.19) as

0Cp

CDO( = 8—04 = QK(CL - CK._>CLG (820&)
oC

Cp, = a—qD = 2K(Cy, — Cx, )Cr, (8.20b)
oC

CD5 = 8—(5D = QK(CL — CKL)CL5 (820(3)

The thrust partial derivatives are part of the force partial derivatives and need

to be added. The thrust is assumed of the form

T = (8.21)

<5

Then, by differentiating (8.21), the partial derivatives are obtained as

. or Ty,
T, = —=22
ou Vzu

(8.22a)
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o T

7, = SL_D
ov V2

~ or Ty

T = 9w = v2"

8.1.4 Extension to an Arbitrary Reference

(8.22b)

(8.22¢)

From section 8.1 the perturbed equations of motion about a state reference Xy

are

(¢o + @)

(‘90 + é)/

(o + 1)

(UO —+ ﬂ)/

(vo + )’

(po + D)

+tan(fo + 0)[(qo + ¢) sin(¢o + )

+(ro + 7) cos(¢o + ¢)]

(a0 + @) cos(go + @) — (ro + 7) sin(go + o)
g o+ Dsin(Go +)

+(ro + 7) cos(¢o + )]

(Xo+ X) + gcos(fo + 0) cos(¢o + &)
—(qo + q)(wo + @) + (ro +7)(vo + )
(Yo +Y) + g cos(fo + 6) sin(¢o + ¢)
—(ro + 7)(uo + @) + (po + ) (wo + W)

(Zo+ Z) + gcos(by + 0)

—£0 +p)(vo + ) + (%j—jq)(uo + al):l

LT~

o+ i ]mm _[xy _I:Ez 0 _'_p)/
+ ; E: Ejyx ]yy _Iyz (qo _'_ q_>/ E
_l’_

_]zm _Izy Izz (TO + 7:)/
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1 I ) I 111 1
0 +]§ Ixx _Ixy _[:cz Ho +]5
+ o+ (j %E’I@m [yy _Iyz o+ q @235};)
’r’o—l—f lzx —Izy Izz 7’0+f

In this section, the reference state vectorXy is arbitrary. However a trimmed
state expects forces and moments be balanced. Therefore, Xo = 170 = ZO = Z)o =
My = Ny = 0. Similar to the previous analysis the trigonometric functions are
expanded using (8.5) and the second order terms neglected.

Equations (8.23) then become
é = (po + D) + tanBp(1 — 6 tan by)[go sin ¢o + 7o €OS ¢y
+ tan Oy [g sin ¢o + Pqo cos ¢o
+1 oS ¢g — ¢ro sin ¢ (8.24a)

0 = qo(cosgo — ¢sin ¢o) + qcos ¢g

—ro(sin ¢g + ¢ cos ¢g) — 7 sin ¢ (8.24Db)
= 1
Y = (1 + 6tanbp)[qo sin ¢ + 7o COS ¢y
cos 6y
+ [#qo cos ¢ + g sin ¢o
cos 6y
—¢ro sin ¢g + 1 cos ¢o| (8.24c¢)

0w = X+ gl(cos By — 6 sin by) cos pg — ¢ cos g sin G|
—(qowo + gow + quo) + (rovo + rov + 179)  (8.24d)
v o= Y+ gl(cosby — 0 sin Bp) sin ¢g + ¢ cos Oy cos ¢
—(roug + rou + rug) + (powo + pow + pwo)  (8.24e)
w = Z+ g(cosfy — Osin by)
—(povo + pov + pwo) + (qotto + qou + quo)  (8.24f)
Liap = Loyq — L = L+ La(gopo + qop + qpo) + L-y(@6 + 2q09)

—1..(qoro + qor + qro)
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— Iy (ropo + 1op + 1po) + 1y (1ogo + T0q + 7o)

— L. (r§ + 2ror) (8.24g)
Ty + LyyG — L.t = M — L, (ropo + rop + 7po) + Luy(rogo + rog + 7o)

41 (13 + 2rr)

—Lo(p§ + pop) — Ly (podo + poq + Pao)

+1..(poro + por + pro) (8.24h)
—Lop = LyG+ Lot = N+ La(p§ + 2pop) — Iy (podo + poq + pao)

+1,,.(poro + por + 7op)

+1Lox (Podo + Gop + qpo) — Ley(45 + 2q04)

—1,.(roqo + qor + qro) (8.24i)

8.1.5 Including Moment Transfer to the Center of Gravity

The previous development considered the center of gravity at the location of the
aerodynamic center, so that the aerodynamic moments need not be transferred.
Assume the distance between the aerodynamic center and the center of gravity
is in the body axes § = [§; 0, d3]7, the total aerodynamic moment at the center

of gravity is then
1 1 1 1 . .1

LR -

ac

If expanding (8.25) the complete differentiation with respect to a variable z yields

OLe, OLoe . 0Z OV

QZ = a? + 52£~— 03 E~ (8.26)
oM,  OM, _OX 07
5 = o, "oy, iy (8.27)
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ONy 0N, oY 0X
2 o +51$—525 (8.28)

Then the procedure to obtain the partial derivatives of the aerodynamic forces
and moments follows section 8.1. In addition to the analytical linear model, a

numerical model is derived from the nonlinear equations using central differences.

8.2 Numerical Linear Model

As for the analytical model, the non linear equations of motion are linearized
about a reference point given by the trim algorithm. A central difference method
is then used [WF92]. Now the non linear dynamics can be checked against linear

dynamics predicted by the linear models thereabove.

8.3 Simulation Dynamics Validation

The simulation dynamics are only checked since the three models, nonlinear,
analytical and numerical linear share the same aerodynamical and structural
elements for the aircraft model. However, the linear models differ from the non
linear model if non linearities are introduced outside the dynamics, for example
in the aircraft properties. This will restrain the validation process to a simpler

structural and aerodynamical aircraft model.

8.3.1 Simplified Aircraft Model for Validation

Non linearities in the aircraft model come exclusively from the aerodynamics.
As shown in 2.4, the aircraft linear stability derivative set is based on static

data augmented with corrective factors for a better accuracy. These corrections
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are functions of dynamic pressure, thrust coefficient, altitude and load factor; in
short, they depend on parameters also driving the equations of motion. Therefore
they cannot be active for the purpose of validating the non linear simulation
against linear models. The aircraft aerodynamics are thus restricted to the static

data set. Now the three models can be compared.

8.3.2 Validation Results

Step response for the longitudinal and the lateral motion are compared. Increase
of 0.5° in symmetric tail or elevator creates the pitch step response, 0.5° in
asymmetric tail or rudder generates yaw step response and 0.5°in asymmetric
wing twist induces roll step response. The two linear models consists in linear

differential equations of the form

Xana = AanaXana + BanaUana (829b)

Equations (8.29) are then integrated using MATLAB and compared to the output
of the non linear simulation. As shown in figures (8.1) through (8.6), the three

step responses agree perfectly.

The dynamics are validated. The aerodynamics were checked against an
independent non linear simulation developed at Rockwell International Seal Beach
using SIMULINK. The same step inputs were used with the corrections added
one by one. Similarly, the responses agreed closely. The simulation tool is now

validated, the open loop characteristics of the aircraft can now be described.
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Figure 8.1: Pitch Rate Step Response to 40.5° step in Elevator for the three

dynamics
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Figure 8.2: Pitch Angle Step Response to 4+0.5° step in Elevator for the three

dynamics
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Figure 8.3: Bank Angle Step Response to 4+0.5° step in Wing Twist for the three

dynamics
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Figure 8.4: Roll Rate Step Response to +0.5° step in Wing Twist for the three

dynamics
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Figure 8.5: Heading Angle Step Response to +0.5° step in Rudder for the three
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dynamics
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CHAPTER 9

Open Loop Simulation

9.1 Open Loop Dynamics

The open loop modes and eigenvectors of the aircraft are shown in table 9.1 for
the longitudinal and lateral dynamics. Recall that the longitudinal states are

X7 = [uw q 0]F and the lateral states X; = [v p r ¢ ¥]T.

These values were computed for a fixed reference at ¢ = 1.4, h = 5,000ft,
v =0 and no wing twist. They are modified when any reference parameter
changes such as stability derivatives, thrust effect or location of the center of
gravity. The following study on robustness of the aircraft modes with respect
to these parameter variations is then conducted. In section 9.2, the stability
derivatives are perturbed, in section 9.3 the robustness to thrust coefficient is
studied and finally the ”best” location for the center of gravity is determined in

section 9.4.
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Mode

Eigenvalue

Figenvector
L1

phugoid

Short period

Roll mode

Dutch roll

Spiral mode

A = —0.0465 £ 0.5092:

A1 = —4.3109
A2 = —2.3397
A =-7.2625

A = —0.5311 £ 0.9668:

A= 0.1149

0.0457 — 0.70734
0.0002 + 0.18601
0.0015 — 0.0059¢

LT

—0.6912 + 0.2277%
1 L]
0.1844

0.9338

0.0230

0.3058

LTI

0

0.1874
0.1222
0.0170
D.96531
0.1338
—0.2104 — 0.6096
-0.0041 + 0.0048¢

[T O

LT

U,

-0.0132 + 0.00152
0.3239 4+ 0.0718¢

0.3977 + 0.5619
1
-0.0890

0

-0.0003
-0.0020
-0.1792
—0.9798

LT TR

0.3334
0.4883
0.0329
—0.8058

|
|

[T O

%

Table 9.1: Eigenvalues and Eigenvectors for Longitudinal and Lateral Modes
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Stability Derivative | Percentage Uncertainty
ClLa 5%
Crna 10%
Cong 20%
Ch 15%
Chp 90%
C 25%
Ciy 20%
C, 15%

Table 9.2: List of Perturbed Stability Derivatives

9.2 Robustness to Uncertainty in Stability Derivatives

Following [Ros79], we perturbed the "most important” stability derivatives from
their nominal value, that is taken from the corrected linear set. The perturbation

percentage and the list of stability derivatives studied are given in table 9.2.

The effect(s) of the perturbation is analyzed both in Laplace domain and
time domain, through root loci and step responses for each stability derivative as
shown in figures (9.1) through (9.16). The analysis does not show an important

sensitivity to all parameters.

9.3 Robustness to Thrust Coeflicient

Another important parameter needs to be considered. The thrust, as stated
in 2.4, plays a significant role in the stability of the aircraft. However, it is not
a quantity known with great precision since it is indirectly measured from the

motor rpm. The thrust coefficient is perturbed from its nominal value obtained
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Figure 9.17: Pitch Rate Step Response for Cp Variations

after trimming the aircraft. The results, in form of root locus and step response

are presented in figures (9.17) and (9.18).

9.4 Determination of Center of Gravity Location

The location of the center of gravity and the variations thereof will also drive
the aircraft performances and stability. At the time, the location of the center
of gravity was not known precisely and could still be changed. This study shows

the arguments in the determination of the final location for the center of gravity.

The influence of the cg location on the dynamics are analyzed through the
root locus of the longitudinal dynamics (fig.9.19). The nominal position was
71.8 in and was perturbed by £ 10 inches. The first remark is that the aircraft
longitudinal modes are quite different from the ”traditional” modes of a small
aircraft. The short period mode is faster and the phugoid very lightly damped.
Figure (9.20) shows the root locus is plotted for the same aircraft with its mass

increased by a factor of 10. This modified aircraft with the same geometry and

132



Longitudinal Eigenvalues
0.8*

335 -3 -2.5 -2 -1.5 -1 -0.5 0

Figure 9.18: Root Locus for Cr Variations

Longitudinal Eigenvalues

3,
%
X
2r X
X
X
X
1+ x «
X 35
:
OF  XXXXX XXX X XXX X XXX
M %
. .
1k
X
X
X
A}
£
3t
-6 -5 -4 -3 -2 -1 0 1

Figure 9.19: Root Locus for cg Variation

133



Longitudinal Eigenvalues

3,
!
X
X
2t X
X
X
s X
X
Pl
0 XX % X X X X
'S
X
1k “
X
X
2 X
X
¥
X
at §
6 5 4 -3 2 1 0 1

Figure 9.20: Root Locus of a 10 times Heavier Aircraft for cg Variation

aerodynamics is closer to "traditional” small aircrafts. The pole location is also
more typical. A basic explanation for baseline pole location is therefore its light

weight.

The root locus can be used to determine the "best” cg location. The criteria
are the amount of oscillation in the phugoid and short period which should be
minimized and the trade-off aircraft stability vs. agility. Finally the center of
gravity is chosen to be at 73.8 inches, for a static margin of 6%. The aero data

set in section 2.4 is generated at this location and constitutes the latest set.
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CHAPTER 10

Pilot-in-the-Loop Simulation

The pilot-in-the-loop simulation where the R/C pilot forms the feedback loop
is now considered. The pilot is trained on the open loop aircraft using the real
time high fidelity non linear simulation with adequate graphics (SGI technology).
According to his comments on the overall maneuverability of the aircraft, two

feedback configurations are studied to improve piloting qualities.

The first improvement concerns the lateral motion: the spiral mode is unstable
which, added to the high yawing-rolling coupling makes the aircraft really sensitive
to heading commands, that is the aircraft has a tendency to enter a spin from
which the recovery is very slow. The baseline is already equipped with gyroscope
measuring yaw rate. The gyroscope can be modeled as a simple P-controller.

Different designs are studied to stabilize the spiral mode in section 10.1. The
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Figure 10.1: Spiral Mode Stabilizer Configuration

second improvement according to the pilot is to damp the phugoid. The aircraft
phugoid is very closed to the imaginary axis with a very small damping as shown
in fig (10.6). This makes the aircraft very sensitive in pitch. More precisely, the
very light and flexible structure of the craft requires a very small pitch angle for
landing. The oscillations in pitch due to the phugoid need therefore to be damped
for a softer landing. Using gyroscopic measurement, the pitch rate is fed back in

the system as studied in section 10.2.

10.1 Spiral Mode Stabilizer

The basic idea is to feed back yaw rate using gyroscopic measurement. The
hardware configuration on the aircraft also includes elements such as receivers,
actuators, V-tail mixer and electronic components such as summers and amplifiers,

so that the final system is presented in figure (10.1).

10.1.1 Model and Design Constraints

The transmitter (R/C) is programmed so as to give a direct rudder command
and a turn command as shown in figure (10.2). The former commands only the

rudder whereas the latter is linked to all surfaces, that is rudder and asymmetric
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motor pitch

rudder |-@ turn

Figure 10.2: R/C Transmitter Configuration

wing twist. In addition to the feedback configuration, some limitations apply to

different hardware elements as

K, is a mechanical gain on the wing twist actuators and is fixed to 2.6.
K, is the receiver gain and can take continuous values ranging from 0.3 to 1.2.

Kgyro is the gyroscope gain. Nothing in particular restrains its value, however a

gain higher than 2 will be difficult to obtain physically.

K isthe V-tail mixer gain and can take discrete values within the set {0;.5;.75; 1}.
The design should also satisfy the following criteria:

1. Stable spiral mode and stable dutch roll.

2. A turn radius of 200ft (safety range problem), which translates into a yaw

rate of 10°/s at a dynamic pressure of 1.4psf and an altitude of 5,000ft.

3. A safety factor of 2 on the gain, which is equivalent to a gain margin of

3dB.
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10.1.2 Controller Design

The model for the plant is a linear model derived numerically from the non linear
simulation. The reference point is chosen to be at § = 1.4psf, h = 5,000ft, v = 0°
and no wing twist. The closed loop transfer function is derived using state space

representation, as follows

T = AT+ Bu (10.1a)
1 [
. - B H (10.1b)
5A
T = [vprov]’, (10.1c)

where A and B include the actuators model, R is the rudder command and 0 A
the wing twist command. Using the bloc diagram on figure (10.1), the control @

can be expanded as
1 1
g(s 5Rc + KsKrec Te — KsKgyro r El

KmKrec Te — Kngyro r

1 1 1 1 1 1
B e = S = R = VY = R = ST
K, K, 0

The output vector 7 is defined as g = Cz =1[0 01 0 0]z = r and
1 L1

1 1 [ 1
K- H k- H,.. - E 03
K., K,, 0

Combining equations (10.1), (10.2) and (10.3), the closed loop transfer function

from r. to r is obtained as

Gy =C (sI - A)™ B, (10.4)
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where

A = A- BK,C

B = BK,.

From a root locus point of view, in order to have the spiral mode moving
towards the stable left half plane, only positive feedback is possible. So, if the
feedback loop is @ = — KT, only negative values of K apply. Let start with a mixer
gain of 0.5 and a receiver gain equal to the gyro gain of -0.2. The roots are shown
in fig 10.3 and satisfy the requirement of stability. Now consider the response
of the system to a 10°/s step in yaw rate for 70 seconds. The criteria are the
time to 10°/s yaw rate and the steady state error. If the former is reasonable,
the steady state error is too big. Another remark concerns the non minimum
phase zero behavior. The control surfaces are driven in the opposite direction,
requiring a fast drop-rise motion increasing with the receiver gain, the actuators
may not be able to do it. Also the transient response is faster with increased
receiver gain. The trade-off stands then between a good (fast) transient response
at the expense of visible non minimum phase zero behavior. Some configurations

are summarized in the following table.

From the above results, it is clear that the criterion on gain margin will never
be achieved, as well as the range limit on the receiver gain. The increase of the
V-tail mixer gain makes also the wing saturation in the opposite direction to
the command appear faster, limiting again the freedom on the receiver and gyro
gains. To conclude, the second configuration is the best compromise between fast
transient response, non minimum phase behavior and gain margin as shown in
figure (10.4). However, the steady state error is still important. This is the final

design since the hardware forbids us from using an integrator to reduce the error.
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K, | Kree Kgyro | Gain Phase Time to Note
Margin (dB) Margin (dB) | 10°/s r (sec)
0.5 |-0.05 -0.2 |1.63 20.38 38
-0.08 20
-0.1 17 T
-0.15 -0.25 | 1.3 34.98 15 T
0.751-0.2 -0.2 1.65 22.73 10 ]
-0.3 5 I
-0.25 -0.25 | 1.32 35.95 5 I
1.0 [-0.2 -0.2 |1.69 24.76 12 T
-0.25 -0.2 5 I

T: fast drop/rise

I: wing saturation in opposite direction

Table 10.1: Summary of Feedback Configurations for Spiral Mode Stabilizer

Root Locus for feedback gain of -0.2
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Figure 10.3: Spiral Mode Stabilizer Root Locus for Starting Values
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Root Locus for feedback gain of -0.2
15p
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Figure 10.4: Spiral Mode Stabilizer Root Locus for Final Values

After tests on the real simulation time simulation, the pilot felt comfortable

with the lateral response so that the feedback configuration is dropped.

10.2 Pitch Damper

The pitch damper configuration is simpler than the spiral mode stabilizer since
there is no mixer, as shown in figure (10.5). The parameters are the gyroscope
gain and the receiver gain. The root locus of longitudinal dynamics in figure (10.6)
is made for increment of 5 in the gyro gain, the receiver gain staying at 1.0. It
is now obvious that the phugoid mode is difficult to "move” in order to get a
significant improvement in the damping. Now consider a step in pitch rate of 1°/s
for 95 seconds. In order to smooth the highly oscillatory transient response, the
gyroscope gain need to be at least 2. This value is unreasonable, thus the lightly
damped oscillations cannot be avoided. However, an advantage of this feedback
is the infinite gain margin. The gain value is thus left to the appreciation of the

pilot. After several simulated landings, a gyroscope gain of 0.15 seems to give
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Figure 10.6: Pitch Damper Root Locus for Starting Values

satisfactory results. The dynamic response of the closed loop to a step input in

pitch rate is shown in figure (10.7).

After real flight tests, the gyroscope gain is dropped to 0.03.
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CHAPTER 11

Autonomous Aircraft Configuration

This chapter presents the guidance scheme for the medium /high altitude flight
tests in section 11.1, the derivation of a full state controller associated with a
Kalman filter in sections 11.2 to 11.4 and the use of Loop Transfer Recovery

procedure to insure a good overall robustness in section 11.5.

The guidance provides commands to reach way points and track dynamic
pressure and lift coefficient. Commands are altitude and heading angle for the
way points, angle of attack for tracking lift coefficient and forward velocity for
tracking dynamic pressure. Two motion modes are described: reaching a way
point and orbiting around a way point position to reach altitude. The controller
is composed of two parts. A simple P-controller is used for altitude command,

providing power setting and a LQ regulator for position and tracking, providing
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Figure 11.1: Heading Angles Definition for Way Point Guidance/Position

tail deflections and wing twists. Using the linear model of the aircraft, an optimal
full state feedback controller is derived from the Linear Quadratic Regulator
(LQR) theory. As no complete information is perfectly known, a Kalman filter
is estimating the state. The filter is also designed using the LQR theory for the
dual problem of the controller. Finally, to recover the robustness characteristics
of the full state feedback controller, a Loop Transfer Recovery (LTR) procedure

is applied.

11.1 Way Point Guidance

The guidance forms the outer loop of the system and thus includes only slowly
varying dynamics. It provides commands that the controller tries to satisfy
using the three longitudinal controls, throttle, symmetric tail and wing twist,
and the two lateral,asymmetric tail and wing twist. The scheme is designed to
meet external constraints such as safety range and internal constraints such as

structural limits.
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Longitudinal commands Lateral commands

- u.: forward velocity for ¢ tracking | - ¢.: heading angle for direction
- a,: angle of attack for C'p tracking

- h.: altitude for climb/descent

Table 11.1: Summary of Guidance Commands

11.1.1 Guidance Scheme Design

Any UAV must stay, during the test flight and in case of termination, in a
certain range fixed by USAF [Mem94]. To satisfy this range constraint a possible
guidance design is to have the aircraft successively reached way points fixed in the
range. This scheme leads to commands in heading angle for direction and throttle
for climb. Structural limitations reflect in the tracking of dynamic pressure and
no-stall condition in the tracking of lift coefficient. The complete command set

is summarized in table 11.1.

11.1.2 TImplementation of Tracking Commands

The dynamic pressure is defined by ¢ = %p V2, which contains fast dynamics
in the airspeed V. The slower longitudinal speed u replaces V as the tracked
variable as |:2|__
q
U = —— 11.1
p(h) (aL-1)
The commands then depends solely on altitude which is a slow dynamics. Similarly,

the angle of attack tracking command depends only on the stability derivatives

of the aircraft, which, in this case, are only the static values as

- CL - CLO

o (11.2)

Qe

a
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11.1.3 Way Point Guidance

A way point is defined by its position (X, Y, H) in the inertial frame. The heading
command . and the altitude command h. depend only on altitude, position and
heading angle which are slow dynamics. For each characteristic (X,Y, H) a zone
of sufficient proximity is defined as a cylinder centered on each way point where
the aircraft is considered to have reached the way point. Two different ”status”
of the aircraft can be defined as far as the guidance is concerned: 1. Reaching
way point altitude only (the aircraft is already in the planar proximity zone for
position)

2. Reaching way point position (and eventually altitude if not reached yet)

As an example, if the aircraft reaches the way point position but not the
altitude, it begins an orbit of defined radius around the way point until altitude
is reached. If there is no more way point, the aircraft orbits around the last one

encountered.

11.1.3.1 Reaching Way Point Position

The heading command is determined as

Y. = ¢ + sat(Ay) (11.3a)

where 1) is the aircraft heading angle and v, is the heading angle to the way

point as shown in figure (11.1), so that

Izyj v 1
¢wp = tan_l 7){21; ~ X

A saturation needs to be set on A to avoid important changes in heading
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Figure 11.2: Heading Angles Definition for Way Point Guidance/Altitude

command. The maximum change allowed for A is 30°.

11.1.4 Orbiting

The heading command is stated as

Ve = 1 + sat(Avy) (11.4a)
Ay = ¢ — ¢y, + KAR (11.4b)

Now A has an additional term to ensure the aircraft orbits on a fixed circle
around the way point. AR is the relative distance of the aircraft to the orbit

radius, the gain K drives this error to zero as shown in figure (11.2), so that

—1
R = (Xup—X)2 + (YY) (11.5a)
AR Bor — R (11.5Db)
Rorb
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h—h.>e€ above the proximity region:

the engine is shut off (ps = 0).

h—h.<—¢€ | below the proximity region:

the engine is at full power (p, = 1).

|h—h.| <€ | in the proximity region:

the power setting is a linear function of Ah.
h=h, desired altitude:

the power setting is at the trim value.

Table 11.2: Altitude Control Algorithm

11.1.5 Altitude
For each case, the altitude command is simply the altitude of the way point as

he=H (11.6)

11.2 Proportional Controller for Altitude

The altitude error Ah = h—h, generates a power setting value using a simple
controller gain K. Let € define the zone of sufficient proximity from the way point
altitude. Then the controller generates power setting as shown in figure (11.3)

and summarized in table 11.2

11.3 Linear Quadratic Regulator

In this section the design of a full state feedback controller using the Linear

Quadratic Regulator theory [BH75, Che84] is derived. The controller design uses
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Proportional controller for altitude

Ah K ——> Power setting Pg
Power setting
11
Pg(trim)
t t
—¢ € Ah=h-he

Figure 11.3: Proportional Controller for Altitude
the linearized dynamics of the aircraft as
T = AT+ Bu 7 given (11.7a)
y = Cz+ Du (11.7b)
where the matrices A, B, C' and D are time invariant. The reference is § = 1.0psf,

h = 5,000ft, v = 0° and no wing twist. Figure 11.4 shows the equivalent transfer

function.

11.3.1 LQR Design

A full state feedback assumes perfect knowledge of all the states. The design

then consists in finding the gain matrix K, so that u = K7.

The closed loop system is shown in figure (11.5) and described by

T = AT + BYw; o given (11.8a)

y = C7 + D"wy (11.8b)
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Figure 11.4: LQ Controller: Open Loop System

v
)

Figure 11.5: LQ Controller: Closed Loop System
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Longitudinal states | Lateral states
Sy - U g
1

o — o p
U — Ue r
a— Qe ¢
q Y = e
0 0T ail
OTail OWing
OWing Buwind
Qywind

Table 11.3: LQ Controller States

u = Kz (11.8¢)

where w; represents all the input combined, that is commands from the guidance
and wind disturbance @ and controller outputs w. A controllable state space is
chosen so that all the states and controls used in the LQ problem have zero state

equilibrium as shown in table 11.3
Vertical and Lateral wind gusts velocities (v, and w,) are approximated by
the same first order model.

Wy = —=p (wg — wy)

where p = 2.93 at 5,000 ft and wy is a white noise process with the statistics

defined in chapter 7.

The problem is stated in terms of the optimal control theory: considering a

dynamic system modeled as

T = AT + Bu (11.9)
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find the control v = K x which minimizes the quadratic performance criterion

2

J = . ' QT + u' Ru)dt (11.10)

where the () and R matrices represent weightings on the states and the controls.
The method for choosing () and R is described in [BH75]. As a starting point,
each state and control is scaled by its maximum deviation. Since the control
surfaces all move about the same amount and in the same unit, R is a unit
matrix multiplied by a scalar. The final coefficients for () and R are determined
by studying the transient response in terms of rise time, overshoot and settling
time: as an example, off diagonal terms in () tend to reduce overshoot. These

terms are found by trial and error. The longitudinal Q and R are finally

1 1
41 -1 0 0 0 0 00 0
=1 41 0 0 0 0 00 0
—p 0 0.0001 0 0 0 00 0
— 0 0 00000 0 0 00 0
Q=0 o o0 0 00001 0 000K (1111
— 0 0 0 0 50 00 0
— 0 0 0 0 0 50 0
— 0 0 0 0 0 050
0 0 0 0 0o 0001
R =5 I (11.12)

The matrix R is only 2 x 2 since the longitudinal controls dr and d4) are
symmetric, yielding a simplified control vector u as
1 1
OTail(rR) + OTail(L
5 = B e 5
OWing(R) T OWing(L)
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The lateral weighting matrices are given as

1 1
—0.025 0 0 0 0 0000 0
— 0 00000025 0 o 0 0000 0 [
— 0 0 0.0000025 0 0 0000 0 —
— 0 0 0 0025 0 00 0 0 0 —

- =N 0 0 0 0125 0 0 0 0 =
©= =N 0 0 0 0 1000 0o K
— 0 0 0 0 0 0100 0 —
=N 0 0 0 0 0010 0 B
— 0 0 0 o 0 0001 0o H
0 0 0 0 0 00 0 0 0.0000025
(11.13)

R = I (11.14)

The optimal control theory for linear systems associated with a quadratic cost

on infinite interval provides the feedback K as

K= -R*'B'P (11.15)

where P is a solution to the Algebraic Ricatti Equation (ARE)

AP + PA — PBR'B™P + Q =0 (11.16)
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By applying equation (11.16), the longitudinal gain matrix K is obtained as

1
——1.0666
—2.0847
—13.6403
—0.0161
KT = 47,8596
—4.0550
—11.3857
—0.1129
—0.0267

and the lateral gain matrix as
1

3173 —0.3173
6810 —1.6810
0.7632 —20.7632
7448 —0.7448
o _ 2166 —0.2166
0.4571  0.0429
0429 —0.4571
0.0439  0.0439
0439 —0.0439

—0.2828  0.2828
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1.0307
1.9632
0.4573
0.3459
—9.8039
—0.7673
0.1129
—0.5051
—0.3205

0.3121
2.1818
20.8918
0.9380
0.1249
—0.0439
0.0439
—0.4715
0.0572
—0.2907

(11.17)

(T T [

—0.3121
—2.1818
—20.8918
—0.9380
—0.1249
0.0439
—0.0439
0.0572
—0.4715
0.2907

(T T O




11.3.2 LQR Robustness Properties

The Linear Quadratic Regulator has been shown in [SA77] and [LSAS81] to have

important robustness properties. In particular,
1. Gain margin = (-6 dB, o0)

2. Phase margin = (-60°, 60°)

11.4 Estimation

In this section the use of a state estimator is justified and its design presented.
Similarly to the controller design the aircraft linearized dynamics in (11.7) are

used.

11.4.1 Necessity of State Estimation
The use of a full state feedback is in fact not realistic for at least three reasons:

1. The wing gust is not a known dynamic system, since it is forced by white
noise. Only its probabilistic characteristics, such as mean and variance, or

power spectral density are known.

2. All the states are not fed back since all of them are not measured directly.
As examples, no measurement for forward velocity or wind gust is available
and the wing and tail deflections have to first pass through the actuators

dynamics.

3. Finally, even the measurements are not perfect since they are corrupted
by sensor noise which is only known in terms of mean and power spectral

density.
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Therefore a Linear Quadratic Gaussian Regulator is needed. This regulator
reduces, by separation property, to the combination of an optimal Kalman Filter

and a LQ regulator [May79].

11.4.2 State Estimator Design

Let the linear dynamic system be modeled as
T = AT + Bu+ B"w (11.18a)
y = CT + Du+D"v (11.18b)

where w is the unknown disturbance vector and ¥ the sensor noise vector. If

combining the stochastic processes, equations (11.18) reduce to

T = AT + Bu+B“w (11.19a)
7 = CT + Di+D*w (11.19b)
—1 [
with w = g} ElThen B*D*T = (0 when w and v are uncorrolated and
v
Dv DvT = .

Let T be the state estimate, where the states are summarized in table 11.4.

Then the Kalman Filter dynamics follows the system dynamics with the addition
of a residual as

T =A%+ Bu+ F(y — C%) (11.20)

The residual is the error between the output measurement and the estimated
output. The estimation problem of finding the correct gain matrix F is the dual
of the optimal control problem when stated as follows: find the control vector @

that minimizes the performance index

L
J = , (C Q¢ + @' Ra)dt
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Longitudinal estimated states | Lateral estimated states
i 3
& p
q T
6 é
STail(R + L) 1&
Owing(R + L) Orait(R), Oran(L)
Qg Owing(R), Swing(L)
ng
Table 11.4: Estimator States
with
Q = B“B“T (11.21a)
R = D'D'" (11.21Db)
subject to the dynamics
(=ATC + C"a (11.22)

The gain matrix is then given by

F=—-PCTR™

where P is the solution to the Algebraic Ricatti Equation

AP + PAT — PCTR'cP + Q=0

11.5 Loop Transfer Recovery

In this section we shall explain the Loop Transfer Recovery procedure [DS81] and

its use.

158



11.5.1 Necessity of Loop Transfer Recovery

When a state estimator is used, associated with a full state feedback controller,
the latter does not have the robustness characteristics we stated before. Indeed,

gain and phase margin can be anything.

The LQ filter was designed to produce the best estimate of the state, in terms
of statistics, based on knowledge of the process noise or wind disturbance and the
sensor noise. However, when these 'noises’ are treated as design parameters, a
filter structure can be formed so that the closed loop system dynamics approach
asymptotically the LQ regulator dynamics. Clearly, the robustness properties of
the LQR may be recovered.

11.5.2 Design

The process noise power spectral density W is now a design parameter. It is

shown in [DS81] that by choosing
W = B*WoB"" + p*BB"

and letting p — oo, the filter gain matrix F' has the asymptotic behavior

lFeBWVWZ
P

and the loop transfer function K (s) G(s) approaches the LQR transfer function

pointwise in the s-plane as:

lim K(s) G(s) = K (sI — A)™'B

pP—00

where K represents the LQR + filter transfer function as shown in figure (11.6).
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Figure 11.6: Linear Quadratic Gaussian Regulator

This procedure applies with some restrictions:

the system must be (C,A) observable and (A,B) controllable. The system must
also be minimum phase and there should be no fewer outputs than controls.
Figure (11.7) illustrates the LTR procedure applied to K. The parameter value

is chosen to be p = 0.5. the recovery is viewed using the singular values?.

!The singular values (sv) of a matrix A are by definition the eigenvalues of AA* where A*
is the complex conjugate transpose of A. The recovery of robustness properties can be viewed
through the asymptotic convergence of the maximum singular value
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Figure 11.7: Loop Transfer Recovery: Maximum Singular Values
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CHAPTER 12

Closed Loop Results

In this part simulation results are presented. They were obtained in demonstrating
two kinds of flights. As expected, the previous developments represent a frozen
image of the simulation. Thus some of the results thereafter are not complete

with respect to all the features presented.
1. The solar powered climb to altitude results were shown in the feasibility
report of January 1996.

2. The way point guidance scheme validation was used to demonstrate flight
in moderate turbulence. The results were first presented at the preliminary

design review of March 1996 and were updated in May 1996.
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12.1  Solar Powered Orbiting Flight to Altitude

The feasibility of autonomous vehicle ascent from near sea level to above 65,000
feet is demonstrated in a high fidelity, six degree of freedom nonlinear simulation.
The aircraft model includes first order actuator dynamics and first order aerodynamic
coefficients, , a preliminary full-state feedback controller and a guidance law.
The operating environment model includes atmospheric turbulence and solar
incidence. The simulated flight path is a helix with a three mile radius. Simulation
results indicate that ascent to 65,000 feet from Dryden at the vernal equinox is

possible and requires 6.5 hours.

12.1.1 Configuration and Environment
12.1.1.1 Configuration

To minimize required control surface power in turbulence, a neutrally stable
configuration is selected for this study. The nominal weight is 134 1b. The
electric motor used for propulsion generates a maximum of 2% horsepower and
operates at 90 percent efficiency. The propeller efficiency is assumed to be 85
percent. The solar cells cover 90 percent of the 150ft? wing planform area and

are assumed to be 12.5 percent efficient.

12.1.1.2 Environment

A standard atmosphere model is used for the troposphere and the stratosphere.
The atmospheric turbulence model is derived from Bryson’s second-order model
which is derived from a statistical turbulence description found in Mil Spec 8785

C. The model includes turbulence in the three aircraft axes.
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To derive the energy supplied by the solar panels, a solar incidence angle
is derived. First, a vector from the sun to the earth is projected onto the
direction normal to the plane tangent to the earth’s surface below the aircraft.
This transformation includes solar declination which depends on the time of
year, latitude and the solar hour which depends on the time of day. Next, a
transformation to the aircraft body axes is applied. One surprising conclusion
drawn from the simulation study is the strong dependence of the solar panel

output, hence the thrust, on the aircraft pitch angle.

12.1.2 Flight Control

The flight control design has four objectives. First, regulate the dynamic pressure
so as not to exceed a given safe limit. This is done by tracking a forward velocity
command provided by the ascent guidance. Second, regulate the lift coefficient
so as to avoid stall. This is done by tracking an angle of attack command also
provided by the ascent guidance. Third, climb as quickly as possible. This
is done by commanding maximum power setting during climb. Finally, for
lateral-directional control, track a heading angle rate command provided by the

ascent guidance. For now, all measurements are provided with no sensor noise.

The longitudinal controller design is a linear, full-state feedback regulator
where the state-space includes u and «, pitch rate ¢ and pitch angle 6. Also,
for proportional-integral command tracking, the integrals of the tracking errors
E(Iu —u,) and E(Ia —a.) are included where u, and «a, are the commanded forward
velocity and angle of attack. Since there are two regulated quantities and the
motor is operated at the maximum power setting, both symmetric tail and aileron

deflections are used for direct lift to decouple v and «a.

The lateral controller design is also a linear, full-state feedback regulator. The
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design state-space includes the sideslip angle 3, body axes roll and yaw rates p
and r, and the Euler bank angle ¢ and the Euler heading angle rate tracking

error ¢ — 1@ where 9, is the commanded heading rate.

The linearized aircraft dynamics used for both controller designs are for the
flight condition at an altitude of 20,000 ft, a dynamic pressure of 1 psf. and flight
path angle of 1 deg. Only one nominal flight condition is used since preliminary

simulation results indicate that no gain scheduling is needed.

12.1.3 Ascent Guidance

As with the flight control, the ascent guidance decouples into two parts as
longitudinal and lateral guidance laws. The longitudinal guidance provides forward

velocity and angle of attack commands for the flight control.

¢ p(h)
o _ C’L - CLO
c o

Here, § is a desired constant dynamic pressure; p(h) is the ambient air density; Cf,
is a desired constant lift coefficient and ', and Cp, are aerodynamic quantities

taken to be constants.

The lateral guidance provides an Euler heading angle rate command for a

helical climb.

, o Y s IR
. = K R— 22+4y?

Here, K is a gain to be determined; R is the radius of the desired helical flight

path and z and y are the downrange coordinates.

To avoid interfering with the inner loop, the guidance law, or outer loop, uses

only the slowly varying positions as measurements. Longitudinal guidance uses
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only the altitude and lateral guidance uses inertial downrange coordinates.

12.1.4 Simulation Results

The simulated case is an ascent of eight hours from Dryden, 34° north latitude
in light wind conditions, beginning at 1,000 ft at 8:00 am. The helical path has
a radius of 15,000 ft, about three miles. The tracked dynamic pressure is § = 1
and the tracked lift coefficient is C, = 1.1.

Altitude (kft)

-20

Y Range (kft)

400 v v v by v by v e b e e b by

X Range (kft)

Figure 12.2: Helical pattern
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The climb rate depends solely on the power collected by the solar panels.
Hence the daytime hour and the variations in the airplane attitude towards the
sun are strongly reflected in the airspeed, thrust and flight path angle.

In addition to these large scale oscillations, small perturbations due to wind gust
are superimposed.

Finally, tail and aileron deflections illustrate the control power required to fly the

helix.
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Figure 12.3: Airspeed vs. altitude
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Figure 12.4: Thrust provided by the propulsion module vs. altitude
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Figure 12.5: Flight path angle vs. altitude
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Figure 12.6: Euler bank angle vs. altitude
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Figure 12.7: Sideslip vs. altitude
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Figure 12.8: Right tail deflection vs. altitude
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Figure 12.9: Left tail deflection vs. altitude
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Figure 12.10: Right aileron deflection vs. altitude
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Figure 12.11: Left aileron deflection vs. altitude

12.2 Way Point Flight in Moderate Turbulence

The simulation case is run with 5% standard deviation wind gust in the each of
the three directions. The way point guidance commands a trajectory whereby the
aircraft ascends 2500 ft. to the first way point, cruises to the second way point

and begins a helical descent to the third.
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12.2.1 Simulation Results

Wind gust histories for the longitudinal and normal directions are shown in
figures 12.12 and 12.13. The lateral wind gust is statistically the same as the

normal gust.

20

15r

Longitudinal Wind Gust (ft/s)

0 5 10 15 20
Time (min)

Figure 12.12: Longitudinal Wind Gust: 5ft/s standard deviation.

Vertical Wind Gust (ft/s)

20 . . .
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Figure 12.13: Vertical Wind Gust: 5ft/s standard deviation

Note that the total rms standard deviation is about 5v/3 = 8%‘ which is
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closer to being characteristic of moderate turbulence. ]?urthermore,&%%t total rms
is about 25% of the inertial airspeed. However, since the wind gust bandwidth
is much lower than the airplane closed-loop bandwidth, the airplane is able to

track angle of attack and forward velocity commands through the gust.

The tracked dynamic pressure is § = 1 and the tracked lift coefficient is

Cp = 1.1. Altitude and range plots are given in Figures 12.14 and 12.15.
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Figure 12.14: Way Points Trajectory: Altitude.

Figures 12.12 and 12.13 show wind gusts reaching 30 values of 15%. With
gusts of this size, the wind induced angle of attack varies as much as 28° as shown
in Figure 12.16. This would be the aircraft angle of attack if the attitude were
fixed as would effectively be the case if the gust bandwidth were on the order of
or higher than the aircraft bandwidth. However, Figures 12.17 and 12.18 show
that the angle of attack is tracked within 1.5° and the dynamic pressure within

0.2 psf. Figure 12.19 shows that the aircraft wing loading does not exceed 0.2 g.

To be complete, figures 12.20 and 12.21 show the right tail and right wing

control surface histories.
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Figure 12.15: Way Points Trajectory: Range.
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Figure 12.16: Wind Induced Angle of Attack
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Figure 12.17: Angle of Attack History
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Figure 12.18: Dynamic Pressure History
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Figure 12.19: Wing Loading History
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Figure 12.20: Right Tail Deflection History
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Figure 12.21: Right Wing Twist History
12.2.2 Conclusions

Simulation results indicate that in low speed flight, the flyer effectively tracks
angle of attack and dynamic pressure through wind gusts with standard deviation
as much as 25% of the aircraft inertial speed. This is possible because the wind
gust dynamics admitted by Bryson’s model [HB77] have a bandwidth much lower
than the closed-loop bandwidth of the airplane. Hence, in low speed flight, wind
gust bandwidth is relatively more important than the gust magnitude. Since the
low bandwidth wind gust bandwidth assumption is critical to successful flight, it

is suggested that the wind gust model be validated empirically.

176



CHAPTER 13

Conclusions

The purpose of this research is to combine models for all the elements that
contributes to the high fidelity simulation of a lightly loaded flexible solar powered
autonomous aircraft. The approach is to recognize the relevance of internal
structural and aerodynamical parameters and external environmental factors.
First, the structure model accuracy originates from considering both a rigid and
elastic body. The nominal nonlinear equations of motion are obtained From the
rigid body . The elastic behavior of the craft appears in the form of corrections
to the aerodynamical data. The relative importance of these corrections states
without ambiguity the relevance of not neglecting elastic deformation. This
remark leads to the necessity of flutter analysis to determine safety parameters
on the structure. Aerodynamical precision is gained by computing nonlinear
stability derivatives. The first step is to correct the stability derivatives for

propulsion effect and dihedral effect. Visible modifications over the basic static
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values are obtained. Propulsion parameters are made relevant to the high fidelity
after the prototype taxi tests. Experimental data replace the momentum theory
results. Solar power remains theoretical to accommodate the long term available
technology. Exogenous factors mainly consist in the wind gusts, which may
damage the structure during its climb to high altitude. The wind gust model
reaches accuracy by combining the statistical requirements for the input random
process in [Ano80] with the three dimensional continuous dynamics in [HB77].
The high fidelity simulation dynamics are validated against an independently
derived linear model and a numerical linear model with success. The aerodynamics
are checked using an independently developed nonlinear simulation. The complete
and validated product provides a tool for pilot training before flight tests. Minor
corrections to the aircraft behavior are studied following and in correlation with
the pilot appreciation. Simulation tests lead to the abandon of a spiral mode
stabilizer and the implementation of a pitch damper. The long term autonomous
aircraft is equipped with an autopilot. The design of a way point guidance
combined with a Kalman filter and a linear quadratic regulator results in the
feasibility of high altitude climb. The performance of the regulator is attained
by using loop transfer recovery procedure. The guidance scheme robustness is

tested through the viability of flight in moderate turbulence.

Further research should be carried out to fully combine rigid and elastic
motion. The augmented system response to disturbances should then be fully
assessed. After the first successful flight tests in November 1996, aerodynamical
and propulsion data should be extracted to further improve the aircraft model.
The lessons learned from these flights would also lead to the redesign of the
prototype, prior step to the study of formation flight. The new long term

research path goes along improving the autopilot design to account for parameter
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uncertainty such as propulsion effect or structural dynamic deformations that can

affect the controls.
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APPENDIX A

International Standard Atmosphere

An International Standard Atmosphere (ISA) provides thermodynamic values
(Temperature, Pressure, Density) for any given altitude in the Troposphere (0
to 11 km) or in the lower and upper Stratosphere (11 to 20 km and from 20
to 25 km). Providing a value to the parameter translate gives the results for a
translated standard atmosphere. This parameter variation can be used for night

flight or for accurate values during take off and landing.

Hypotheses are:

e The Earth is non rotating, which is assumable since the airplane velocity is

quite low.

e The Earth is flat, which is valid for the same reason.
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e The gravity at sea level is an average value independent of the latitude.

Note: gravity is given as a function of altitude and its sea level average value.

Computations of the induced errors can be done and yield :

Non rotating Earth | e = 1.5 107°.V, (m/s) | e1 = 0.0008

Flat Earth €2 =1.6107°V, (m/s) | ez = 0.0046

Average value of g, | €3 = £3 1073 ez = 0.003

A.1 Temperature Laws

Troposphere has a temperature which varies linearly with respect to altitude.
The ground level value is approximately 288.15 Kelvin and the value at the
upper limit of the troposphere is around 216.65 K.

Stratosphere has a constant temperature from 11 km to 20 km of 216.65 K.

Then the temperature is increasing with altitude.

Troposphere From 0 to 36089 ft T = Too + B1H with
By = —0.0035662
Stratosphere I | From 36,089 ft to 65,617 ft | T = 216.65 K

Stratosphere II | From 65,617 ft to 104,987 ft | T' = Ty, + BoH with

B, = 0.0054864}—15

By comparing the results given by the ISA and tables of thermodynamic
values for different seasons, we found an approximative error of 5 K. Hence an

additional error for discarding seasonal changes is of the order of 2%.
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A.2 Thermodynamic Laws

The equations used to compute the standard atmosphere are :

dP = —gpdH Laplace (A.1la)

P = prT Perfect Gas Law (A.1b)

With gravity depending on altitude as

Rearth

g=9 Rearth + H

(A.1) can be integrated as:

Troposphere

9oRearth

L1 [ %Rearth___
(Rearth + H)Too r(Bl.Rearth+To0)

P =P
%0 (TOO — Bl-H>Rearth
Stratosphere 1
1 [—%Rearth
Rea/{‘ H MMstrat1
P = Pstratl T

Rearth + Hstratl

Stratosphere 11

—90Rearth

1 1
(Rearth + H) (TstratZ + B2'Hst7’at2) r(B2.RearthTstrat2)
(Rearth + HstratZ) (TstratZ + B2H)

P = PstratZ

Finally, for all cases
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APPENDIX B

Description of Stochastic Processes

The following is a brief summary of the quantities needed to describe randomness.

B.0.1 Probability and Expectation

In the case of turbulent flow, the process has an infinite number of possible
outcomes. Let us measure each value of the lateral component of the flow velocity
v for a point in the turbulent flow at time ¢;. Let e; be the occurrence of the
measurement in the range v; — Av/2 < v < v; + Av/2, where v; and Av are
known. If n; is the number of time e; is realized and N the total number of
measurements, we have

n; 1

ple) = Jim i, )

p(v;) is the probability function for v. The probability distribution function P,(v;)

is defined as
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P,(v;) = problv < v;] = lim ' Ry (B.2)

N—>ooj:1 N
from equation (B.2, we can infer
0Pv(v,-) ;i
p(vs) du; o (V1) o p(€)d¢

Moreover, the range for wind speed is usually (—oo,00), so for any random

variable X, the probability distribution function becomes

%
Px(X) = pa(Q)d¢

— 00

with Px(—o0) = 0 and Px(o0) = 1.

We can also define

Prob|X — AX/2 <z < X +AX/2] = Px(X+AX/2)— Px(X — AX/2)
I3(+AX/2

= X_AX)2 px(g>dg

Hence, the expected value can be computed for any function g(X) as

1
Blg(X)] = Jim  g(w:) Prob[X, — AX/2 <z < X, + AX/2]

1=—00

=l
= 9(@)ps()dz (B.3)

Two important expected values are the mean and the variance. They are defined

1

mx = FE[X]= xpx (z)dx (B.4)
oo =

Oox = E[(X — mX)z] = (flf - mx)sz(x)dx (B5)

— 00

The previous definitions can be extended to simultaneous observations at

several points in the flow. We obtain the joint distribution function Fx(z1,...,z,)
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as

Ijlll Ijflln
Prob[X; <ap,...,x, < X,] = (1, ..o xy)dey ... dxy,
and the expectation as
A
Elg(z1,...,2,)] = e g(x1, .. xp)pe(e, ..o xy)dey . day,

The previous results can be extended to time history of a random variable.

in the following, stochastic will be a synonym for statistical.

B.0.2 Ensembles and Stochastic Processes

Stochastic Process: statistical phenomenon varying with time.

Ensemble: an ensemble of records is the set of all turbulence time histories

obtained under the same exterior conditions.

Hence the any component of the turbulent wind velocity can be viewed as a
stochastic process depending on both space and time, and indexed by a parameter

a locating the record in the ensemble.
f=1f(zta)

However, « is usually fixed, so that we are looking at only one record of the
process f = f(x,t). We shall introduce now useful notions, such as stationarity
and independence. In the following examples, the stochastic processes depend

only on temporal parameters.

Stationarity: a process f(t) is said to be stationary of order n, if it does not

depend on time but on time intervals, so that for any shift in time 7

pf(f(tl_l'T)a>f(tn+7_)):pf(.f(tl)a>.f(tn))
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then for 7 = —¢,
pr(f(ta), - f(tn)) = pr(f(tr = tn), .-, f(0))
Independence: a process f is said to be independent from another process g if
P(fng) = P(f)P(g) or Elfg] = E[f]Elg]
The covariance or correlation function is by definition

R(t1,t2) = E[(f(t1) —ma)(f(t2) — m2)]
R(ty,t2) = E[f(t1)f(t2)] — mamg

Hence, for stationary processes, R(t1,t2) becomes R(t; — t3), so that the
covariance function vanishes for independent processes. However, in turbulent
flow, we can only assume that velocities are independent for points separated by
long intervals of time or distances.

It is important to estimate the correlation function because it gives information
on the sequencing of events. As an example, if R(-) is largely positive f(¢;1) will
tend to be in phase with f(¢,); if R(+) is strongly negative f(¢1) and f(t2) will be
opposite in phase and finally, if R(.) vanishes f(¢;) and f(t;) will be 90° out of

phase.

B.0.3 Normal or Gaussian Distribution

Normal distributions have an important role in the study of stochastic processes
because they can represent the statistical properties of many random processes
and make all the calculations easier. However, normal distributions do not
accurately represent the structure of turbulence. They can only be used as

approximations in order to develop prototypes useful in studying the response
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of systems forced by turbulence.

The probability density function for a normally distributed random variables

X is given by

1 1 (X —m)?
X)= —exp o
M= e ™y 2
where 02 is the variance and m the mean of X. The moments i, = E[(X —m)")]

are of interest, and for the gaussian distribution

1 1
_ Ijolo(:ﬂ—m)"ex _l(x—m)z dz
Hn = Do oo p

2 o?
All odd moments vanish and it is easy to find a relation between the even

moments:

pion = 1.3 ... (2n — 1)o®"

Another useful feature of normal distribution is that the joint density function

depends only on the means, variances and correlation coefficient as

ey = R(t1,15)

o(t1)o(tz)
It is thus necessary and sufficient for jointly normal random variables to be
independent that their correlation coefficient vanishes. In other words, if two
normally distributed random variables are uncorrelated, they are also independent.
Finally, a linear combination of jointly normal random variables has itself a
normal distribution. As a consequence, if a linear system is forced by a process
jointly normally distributed, the output is also gaussian. Now let us apply this
to a stochastic process: we say a stochastic process is normally distributed if, for
every integer n and every set {t1,...,t,}, x(t1),...,z(t,) have a joint normal

distribution.
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The problem with wind turbulence is that although the velocities have nearly
gaussian distributions, their derivatives do not. However, the derivatives are
linear combinations of x(t1) and z(tp) for small increments in (¢, — ¢,), thus
the joint distribution of (x(t1),x(t2)) is not normal and the velocities are not

representatives of gaussian processes.

B.0.4 Energy Spectra of Time Series

Let u(t) be a component of the observed wind velocity. The speed u can be
considered as the sum of a mean speed u(t) and a gust component u'(t). We
assume that u(t) is a stationary process, so that its mean is constant and the

correlation function R(-,-) depends only on the lag 7 as

R(t) = E[(t)u'(t+71)]

R(1) < o2 (Schwarz inequality)

u

R(0) represents twice the specific kinetic energy of u(t). Using the inverse Fourier

transform, we can relate R(-) to energy as

1 .

R(r) = 5 O(w)e™™ dw (B.6a)
=L

R(0) = 3 _oofb(w)dw (B.6b)

where ®(w) shows the distribution of the turbulent kinetic energy. If we use the

fact that R(7) is an even function, equations (B.6) reduce to

1
R(r) = % o & (w)cos(wTt)dw
R(0) = % . O (w)dw

The quantity ®(w)dw is the energy contribution made by harmonic oscillations

of frequency w. Using analogy with light, ®(w) is called energy spectral density
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function.
From the assumption that ?’ |R(7)|dT < 00, we can deduce that the spectral

density is bounded as

1
. |R(T)|dT < o0

|®(w)] <

3

and continuous as
2
|P(w +€) — P(w)] = — |R(7)|| cos(w + €)T — coswr|dT
i

which is zero by dominated convergence theorem.

If observed data are considered, the records have always a finite length, so

that truncated functions are used as
1

Edi) 11 <7

ur(t) =
Ed > 1
=
!/ !/ <
Re(r) = % oup(t)up(t+1)dt || < 2T
= Ir| > oT
1 )
(I)T(’LU) = ﬁ _oouép(t)e_“”tdtg
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APPENDIX C

Project Team Members

Project Managers :
John Del Frate (NASA)
Jerry Miller (Rockwell)
Jason Speyer (UCLA)

UCLA team :
Randal Douglas single aircraft simulation
David Chichka formation flight and flight computer
Dale Cooper flight computer
Sinpyo Hong flight computer
Laurence Mutuel single aircraft simulation
Phyllis Nelson flight computer
Tony Rios GPS simulation and flight computer
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Walton Williamson flight computer

Jonathan Wolfe formation flight

Rockwell team :
David Bass simulation and structures
David Bose simulation
Barry Brown manufacturing
Darrel Dennell instrumentation and launch vehicle pilot
Steven Dobbs structures
Ken Dunn aerodynamics
Dan Ortega structures
Steven White R/C control and flight test engineer

and all personnel for taxi tests and flight tests

NASA
Tony Frackowiak prototype R/C pilot
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