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Ultra-light high aspect ratio solar powered aircrafts flying in formation provide

a good platform for surveillance or telecommunication relays as redundancy is

inherent to the flock and autonomy to solar energy. The preliminary study on

the feasibility of such a project lies in the simulation and flight test of a prototype.

The craft is first modeled as a rigid body with accurate fully nonlinear dynamics

and aerodynamical data. The elastic behavior of the structure entails flutter

analysis and generation of corrective elastic stability derivatives. Propulsion

and actuation models complete the aircraft simulation. Flying qualities in the

presence of atmospheric turbulence are assessed with a wind gust model. The

simulation provides a useful tool for pilot training and appreciation of the aircraft

open loop behavior, so that necessary modifications of the prototype are performed

before flight test. The design of the autopilot for the long term autonomous flight

is shown. The configuration combines a way point guidance, a Kalman filter

and a linear quadratic regulator. The closed loop simulation demonstrates the

feasibility of high altitude climb and the operational state of the guidance.
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CHAPTER 1

Project Context

The principal motivation for this thesis is to prove the feasibility of formation

flight at high altitude with ultra light solar powered aircrafts. Therefore the study

of flight performance for a single aircraft is a prior requirement.

1.1 The Formation Flight Problem

Recent research programs have developed unmanned aircrafts designed to fly at

high altitude for extended periods of time using solar power. The types of missions

covered by such vehicles would range from reconnaissance to relay stations for

telecommunications. Formation flight presents advantages for instrumentation

distribution, redundancy within the formation and failure management: sensors

can be distributed between aircrafts to obtain wide aperture or, a failure in
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one aircraft does not entail a mission cancellation but a single recall for repairs.

These mission requirements create multiple constraints, making optimization a

major concept: the aircrafts must stay aloft for extended periods of time using

solar power only. Therefore, as much energy as possible must be stored during

the day to allow operation overnight. Obvious solutions begin with trajectory

optimization and state of the art technology for reducing the aircraft weight.

Composite material are therefore dominant in the craft structure. As for the

avionics, the weight constraint makes redundancy a problematic aggravating

solution to safety issues. In addition to energy and weight optimization, improved

aerodynamics can boost the aircraft overall performance.

Indeed the aerodynamic efficiency of an aircraft can be increased with the

aircraft aspect ratio, that is with longer wings compared to their width. The

result is that the lift on the wing increases while the induced drag decreases,

so that the power required to stay aloft is minimized. However, a vehicle with

such a long and slender wing would be unreasonably flexible and fragile. The

alternative is to obtain the same high aspect ratio by designing a formation

of smaller aircrafts. indeed, if n aircrafts with aspect ratio A fly wing-tip to

wing-tip, the resultant configuration will have an aspect ratio of nA. However,

having n aircrafts flying wing-tip to wing-tip may cause obvious problems. The

solution comes from the Stagger Theorem of Munk: in the case of inviscid flow,

the induced drag is independent from fore-aft separations between the aircrafts.

Therefore a V formation or staggered line can be preferred. Even if the drag

reduction benefits will be smaller in viscous flow, the prediction in inviscid flow

seems already promising. The strategy is that each craft benefits from the wake

emanating from the craft in front, that is each aircraft uses the lift generated by

the wake in addition to its own , therefore decreasing the power consumption.

2



Then, the main concern is the control of the staggered line of aircrafts. Finally,

the basic performance analysis of the formation first requires to focus on a single

aircraft.

1.2 Focus of the Thesis

The performance analysis starts with the single aircraft open loop dynamics.

However, this concerns only the rigid body characteristics whereas the lightly

loaded structure could also play an important role. indeed, the flexural behavior

of the wings can induce a loss of control power and the reduction of the benefits

that an aircraft seeks by staying in the wake of the aircraft in front. The primary

focus of the thesis is to study a single component of the formation to reveal the

characteristics which drive the design of a formation controller. A high fidelity

simulation is thus developed. Moreover, this research reflects the analyses done

for the design and flight test of the project prototype. In this scope, closed

loop performance for a single aircraft must also be studied: in a first phase, the

flight tests at low altitude include a pilot in the loop. Depending on the pilot

appreciation, some simple feedback configurations are assessed. Long term tests

at higher altitudes require the design of an autopilot.

In chapter 2 the aircraft is first considered as a rigid body. The six degree

of freedom equations of motion are derived using Newton’s law. The resulting

twelve nonlinear equations ensure a high fidelity simulation. A trim algorithm is

also explained. Finally, the baseline geometry, mass property and aerodynamics

are presented. The aerodynamics are composed of a linear set of data augmented

with corrections and a fully non linear set. The corrections account for mass

effect, flexibility effect, ground effect and propulsion effect.
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However, since the airplane structure is lightly loaded, considerations on

flexibility are a prior condition. Chapter 3 opens with a short introduction to

aeroelasticity. Then energy methods are used to derive the integrated equations

of motions for the unrestrained elastic aircraft using generalized coordinates and

forces. An approximation method is assessed to estimate the generalized forces

in the Laplace domain. Finally, flutter analysis is presented using root locus

techniques and relative importance of elastic deformation is studied.

The aircraft model includes a propulsion system described in chapter 4. The

system consists in a motor and a propeller which characteristics are presented.

Then momentum theory or experimental data provide two separate approaches

to estimate thrust.

Additional aircraft feature originates from solar energy propulsion as shown

in chapter 5. The airplane configuration includes solar panels covering the wings.

Available power to the motor is computed using the projection of the solar

incidence vector onto the wing normal. The matrix rotations between fundamental

coordinate systems are determined and yield the solar incidence vector in the

airplane body axes depending on season, latitude and daytime. The model

accounts also for atmospheric absorption, solar cell efficiency and wing coverage.

Instrumentation and actuation are modeled in chapter 6. Actuators are

mounted on the wings and the tails. Onboard sensors consist of accelerometers,

gyroscopes and air data. GPS attitude data are to be included for the autonomous

configuration. Accelerometer information is derived as an example. Sensor
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information is finally corrupted by band limited noise for realism.

The simulation would not be complete without including exogenous flight

conditions through atmospheric turbulence. Chapter 7 explains the statistical

structure of wind gust as described in [HB77]. General statistics on the continuous

turbulence are given in [Ano80]. Combination of dynamics and input noise

specifications yields a 3-D continuous turbulence model with variable intensity

for low and medium/high altitudes up to 80,000 ft.

The high fidelity simulation is then complete and awaits validation. The

simulation dynamics are checked against an independently derived analytical

linear model and a numerical linear model. The results are shown in chapter 8.

Then open loop responses and modes of the aircraft are summarized in chapter 9.

A sensitivity study with respect to the flight envelope characteristics is conducted.

The closed loop performance is ascertained. The pilot in the loop configuration

is first considered in chapter 10. From pilot comments on the open loop response,

proportional feedback is investigated to control the unstable spiral mode and the

lightly damped phugoid. Design trade offs and limitations are discussed. Then

the autonomous configuration is presented in chapter 11 as the combination

of a guidance scheme, a controller and a filter. The guidance scheme satisfies

structural and external constraints. The former is converted into lift coefficient

and dynamic pressure tracking and the latter mainly viewed as a range constraint.

Hence a way point guidance scheme is built: the commands for range constraints

are heading angle and altitude whereas angle of attack and forward speed are

chosen for tracking. The controller design consists in two separate parts: a
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simple proportional controller for altitude and a Linear Quadratic Regulator.

The P-controller provides power setting and the LQ controller control surface

deflections. The LQ controller design assumes perfect full state information which

is not acquired by sensor data. A Kalman Filter is thus derived to estimate the

aircraft states from sensor information. However the use of an estimator changes

the good robustness properties of a full state feedback controller. A Loop Transfer

Recovery procedure is finally applied to recover the LQR robustness.

Finally, closed loop simulation cases are presented in chapter 12. The feasibility

of solar powered high altitude climb is shown. The case run is a eight hour helical

climb from Dryden (California) and the altitude reached is above 65,000 ft. Then

the way point guidance is tested through flight in moderate turbulence at low

altitude. The trajectory includes ascent, cruise and helical descent. The range

constraint is met at all time.

Appendix A summarizes the parameters and the derivation of an ISA model

with gravity as a function of altitude. The errors due to other simplifications

are computed and yield limits on the model accuracy. Appendix B presents the

basic definitions underlying the statistical model of the atmospheric turbulence.

Appendix C lists the project team members.
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CHAPTER 2

Rigid Aircraft

The aircraft is first restricted to a rigid body. Its dynamic behavior is described

through nonlinear equations of motion. The coordinate systems in which the

aircraft motion is described are presented in section 2.1. Then the rigid body

nonlinear equations of motion are derived and used to obtain the trimmed flight

conditions in section 2.2. Finally, the parameter values for the project baseline

are observed in section 2.4.

2.1 Coordinate Systems

The equations of motion relate different quantities in different axis systems such

as the weight in an inertial frame, the lift in the stability axes and the thrust in

the body axes. However, the resultant equations are inferred in the body axes,

so that the transformation matrices between the axis systems must be derived.
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Figure 2.1: Inertial and Body Axes Coordinate Systems

2.1.1 Inertial to Body Axis Coordinate Systems

The relation between the inertial and the body axis systems is delineated through

the Euler angles φ, θ and ψ as shown on figure 2.1. φ is called the bank angle,

θ the pitch angle and ψ the heading angle. From the inertial frame to the body

axes three rotations are needed:

1. The first rotation is of angle ψ and around the inertial axis Gz0. During

this rotation, the other axes Gx0 and Gy0 become respectively Gxh and

Gyh.

2. The second rotation is of angle θ and around Gyh. Gxh moves then to the

body axis Gxb, and Gz0 becomes Gzi.
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3. The third rotation is of angle φ and around Gxb. Gyh and Gzi respectively

become the body axes Gyb and Gzb.

For each of the thereafore mentioned rotations a cosine matrix transformation is

obtained. The final transformation matrix from inertial to body axis coordinate

systems is then deduce from the multiplication of the cosine matrices, as:





x0

y0

z0




= R





xb

yb

zb




(2.1)

with

R =





cosψ cosθ − sinψ cosφ+ cosψ sinφ sinθ sinψ sinφ+ cosψ sinθ cosφ

sinψ cosθ cosψ cosφ+ sinψ sinθ sinφ − cosψ sinφ+ sinψ sinθ cosφ

− sinθ cosθ sinφ cosθ cosφ





R is the multiplication of three orthogonal matrices and therefore has the property

RT = R−1.

2.1.2 Stability to Body Axis Coordinate Systems

The relation between the stability and the body axes is defined through α and β

as shown on figure (2.2). α is called the angle of attack and β the sideslip angle.

From the stability axes to the body axes two rotations are needed:

1. The first rotation is of angle β and around the stability axis Gza. The other

stability axes Gxa and Gya respectively rotate to an intermediate axis Gxi

and the body axis Gyb.

2. The second rotation is of angle α and around the body axis Gyb. Gza moves

to Gzb and Gxi to Gxb.
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Figure 2.2: Stability and Body Axes Coordinate Systems

Similarly to (2.1), the resulting transformation between stability axes and body

axes is obtained by multiplying two cosine matrix transformations as:





xa

ya

za




= T





xb

yb

zb




(2.2)

with

T =





cosα cosβ sinβ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα





Similarly to R, T verifies T T = T−1.
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Using these transformations, the components of the equations of motion can

finally be combined.

2.2 Nonlinear Equations of Motion

The aircraft is modeled as a point mass rigid body: its mass is then assumed

concentrated at the center of gravity. The body is free to rotate around the three

body axes and translate along these axes. However, this 6 degree of freedom

motion is only local: to locate the aircraft on a map six additional equations for

position and attitude must be added. The whole constitutes a set of 12 nonlinear

equations. For simulation purposes, it is interesting to locate an equilibrium

point or trim as an initial condition to the simulation.

2.2.1 Derivation

The equations are obtained applying Newton’s laws, that is

∑
F = m Γ (2.3a)

∑
M = Γ̇c (2.3b)

where F and M are the forces and moments applied to the aircraft, Γ is the

acceleration at the center of gravity and Γc is the momentum. Since the result is

to be expressed in the body axes, all the needed quantities are converted using

the coordinate transformations in section 2.1. As an illustration, the airspeed

in the stability axes is given by (Va, 0, 0), this corresponds to (u, v, w) in the

body axes so that:

u = Va cosα cosβ

v = Va sin β
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w = Va sinα cosβ

The transformation T in (2.2) is also applied for the aerodynamic forces and

moments as

D = −q̄SCD ı̂a = −q̄SCD(cosα cosβı̂b + sin β̂b + sinα cosβk̂b)

Y = q̄SCY ̂a = q̄SCY (− cosα sin βı̂b + cosβ̂b − sinα sin βk̂b)

L = −q̄SCLk̂a = −q̄SCL(− sinαı̂b + cosαk̂b)

l = q̄ScwCl ı̂a = q̄ScwCl(cosα cosβı̂b + sin β̂b + sinα cosβk̂b)

m = q̄ScwCm̂a = q̄ScwCm(− cosα sin βı̂b + cosβ̂b − sinα sin βk̂b)

n = q̄ScwCnk̂a = q̄ScwCn(− sinαı̂b + cosαk̂b)

(2.4)

where D is the drag force, Y the side force, L the lift, l the rolling moment, m

the pitching moment and n the yawing moment. Besides, (ı̂b, ̂b, k̂b) are the body

axes unit vectors, (ı̂0, ̂0, k̂0) are the inertial axes unit vectors and (ı̂a, ̂a, k̂a) the

stability axes unit vectors.

The weight is converted using the R matrix as

W = mgı̂0 = mg(− sin θı̂b + cos θ sinφ̂b + cos θ cosφk̂b)

The thrust force is given by

T = T cos ζı̂b − T sin ζ̂b

where ζ is defined as the engine setting angle, that is the angle between the thrust

vector and the body axis xb.

To apply equations (2.3), the acceleration and momentum need to be derived

by differentiation with respect to the inertial frame. By way of illustration,
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acceleration is obtained from differentiating twice a position: let us consider

a point M with coordinates (a, b, c) in the body axes with origin the center of

gravity G, that is (G, xb, yb, zb) and let (O, x0, y0, z0) be the inertial reference. The

velocity V is the first derivative of GM and is equal to the sum of the relative

speed of M with respect to the body axes and the speed of the body axes with

respect to the inertial reference:

V = ȧx+ ḃy + ċz + ˙OM + aẋ+ bẏ + cż (2.5)

The acceleration Γ is the second derivative of OM and is the sum of the relative

acceleration of M with respect to the body axes, the acceleration between the

body axes and the inertial reference and the Coriolis term:

Γ = äx+ b̈y + c̈z + ¨OM + aẍ+ bÿ + cz̈ + 2(ȧẍ+ ḃẏ + ċż) (2.6)

Using the Kronecker δ and its properties on (x, y, z), the angular rates (p, q, r)

can be introduced as

ẋ.y = −x.ẏ = r

ẏ.z = −y.ż = p

ż.x = −z.ẋ = q

where p is called the roll rate, q the pitch rate and r the yaw rate. They can be

written in a vector form as

ω =





p

q

r




(2.7)

Using (2.7), equation (2.6) is reduced to

Γ =
dV

dt|0
=

[
d

dt|B
+ ω×

]

V (2.8)
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where the ”|0” means with respect to the inertial frame and ”|B” with respect to

the body axes. Since V is definite in the body axes as (u, v, w) and ω = (p, q, r),

equation (2.8) becomes

Γ =






u̇+ qw − rv

v̇ + ru− pw

ẇ + pv − uq






(2.9)

The same scheme applies to the momentum Γc,

Γc =
dC

dt|0
=

[
d

dt|P
+ ω×

]

C (2.10)

where C in the body axes is given by

C =





Ixxp− Ixyq − Ixzr

−Iyxp+ Iyyq − Iyzr

−Izxp− Izyq + Izzr




(2.11)

The Iii terms are the body inertias and the Iij terms the body products of inertia.

Using equation (2.11), equation (2.10) becomes

Γc =





Ixxṗ− Ixyq̇ − Ixz ṙ + qr(Izz − Iyy) − Ixzpq + Ixypr + Iyz(r
2 − q2)

Iyy q̇ − Ixyṗ− Iyz ṙ + pr(Ixx − Izz) − Ixyqr + Iyzpq + Ixz(p
2 − r2)

Izzṙ − Ixzṗ− Iyz q̇ + pq(Iyy − Ixx) − Iyzpr + Ixzqr + Ixy(q
2 − p2)





(2.12)

Now, the EOM can be assessed in body axes.

2.2.2 Body Axes EOM

The first group of kinematic equations is derived from using equation (2.1) on

˙OG = V where OG has for components (x, y, z) in the inertial frame, so that

these equations define the position of the body center of gravity with respect to

the inertial frame.

14







ẋ

ẏ

ż




= R





u

v

w




; h = −z (2.13)

where h is the altitude.

The second group of kinematic equations states the attitude of the body with

respect to the inertial frame as

ω = ψ̇z0 + θ̇yh + φ̇x = px+ qy + rz (2.14)

or equivalently,





p

q

r




=





− sin θ 0 1

cos θ sin φ cosφ 0

cos θ cos φ − sin φ 0









ψ̇

θ̇

φ̇




(2.15)

However, the most useful form are the inverse equations, that is the relation

between the inertial Euler angles and the body axes angular rates. If equation (2.15)

is inverted, we finally obtain





ψ̇

θ̇

φ̇




=

−1

cos θ





0 − sin φ − cosφ

0 − cos θ cosφ cos θ sinφ

− cos θ − sin θ sin φ − sin θ cos φ









p

q

r




(2.16)

Now equations (2.3) can be expanded as

m
dV

dt
= F aero + F thrust + F inertial (2.17a)

dΓc
dt

= Maero (2.17b)

where the aero forces are [−D Y −L]T in the stability axes, the thrust force is

[T cosζ 0 T sinζ ]T in the body axes and the inertial force [0 0 mg]T in the inertial
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frame and the aero moments are [l m n]T . Finally, we combine equations (2.13),

(2.16) and (2.17) using (2.4) to obtain 12 nonlinear equations in the body axes

as:

ẋ = u cosψ cos θ

+ v(− sinψ cos φ+ cosψ sin θ sin φ) (2.18a)

+ w(sinψ sinφ+ cosψ sin θ cosφ)

ẏ = u sinψ cos θ

+ v(cosψ cosφ+ sinψ sin θ sin φ) (2.18b)

+ w(− cosψ sinφ+ sinψ sin θ cosφ)

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ (2.18c)

φ̇ = p+ tan θ(q sin φ+ r cosφ) (2.18d)

θ̇ = q cos φ− r sin φ (2.18e)

ψ̇ =
(q sin φ+ r cosφ)

cos θ
(2.18f)

u̇+ qw − rv =
L

W
− D

W
− Y

W
+
T cos ζ

W
− g sin θ (2.18g)

v̇ + ru− pw = −D

W
+
Y

W
+ g cos θ sinφ (2.18h)

ẇ + pv − qu = − L

W
− D

W
− Y

W
− T sin ζ

W
+ g cos θ cos φ (2.18i)

Ixxṗ− Ixyq̇ − Ixzṙ = −qr(Izz − Iyy) + Ixzpq − Ixypr − Iyz(r
2 − q2)

+ l cos β cosα−m cosα sin β − n sinα (2.18j)

Iyy q̇ − Ixyṗ− Iyz ṙ = −pr(Ixx − Izz) + Ixyqr − Iyzpq − Ixz(p
2 − r2)

+ l sin β +m cosβ (2.18k)
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Izz ṙ − Ixzṗ− Iyz q̇ = −pq(Iyy − Ixx) + Iyzpr − Ixzqr − Ixy(q
2 − p2)

+ l sinα cosβ −m sinα sin β + n cosα (2.18l)

The equations of motion are also used to spot out the equilibrium point or

trim from which the simulation begins. The following presents a way of selecting

dependent and independent parameters to compute the trim conditions.

2.2.3 Aircraft Trim Algorithm

Trimmed flight means that the sum of forces and moments acting about the center

of gravity of the aircraft is zero as summarized in equation (2.19). Trimmed flight

is equivalently achieved when accelerations and angular rates are annihilated.

0 = MAero (2.19a)

0 = Faero + Fthrust + Finertial (2.19b)

Functional relations for each quantity yields

0 = MAero(h, V, α, δT , δA) (2.20a)

0 = Faero(h, V, α, δT , δA) + Fthrust(p, V ) + Finertial(m, h, γ) (2.20b)

where γ is the flight path angle defined as θ − α and p is the power setting.

Equations (2.20) have five mathematical degrees of freedom: two equations and

seven parameters.

The following combinations for the four independent variables are to be considered:

1. mg, h, V (or q̄) are always chosen as independent variables.

2. γ or p / α or δA are the ”to-be-chosen” independent variables.
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And extensively the problem is to ascertain the set of ”dependent” variables that

generates zero accelerations and angular rates: we want to determine Y = f(X)

such that G(Y,X) = 0. A Newton-Raphson algorithm solves this ”zero of

function” problem.

The motion defined by the 12 nonlinear equations was derived for a point mass

body. The forces and moments are nevertheless computed from the characteristics

of a three-dimensional body.

2.3 Baseline Structural Design

In this section, the prototype configuration defined after a series of trade-offs

from August 1995 to September 1996 is described. As a preliminary, the following

nomenclature is defined:

S surface area

b surface span

tc Thickness ratio

c Mean aerodynamic chord

tr Taper ratio

Λm Sweep angle

A Aspect ratio

δw surface dihedral

The wing and the tail share the above parameters, however, the tail has additional

features such as
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lc Length of the tail over wing mean aerodynamic chord

StSw Ratio of tail area over wing area

Eh Elevator hinge distance

Arm Distance to the tail

To the symbols, the definition of the static margin (sm) must be added as the

distance between the aerodynamic center, that is the point where the aerodynamics

forces act and the center of gravity.

The rigid baseline is fully described by its geometry, its mass property and

its aerodynamics. The geometric parameters are given for the wing, tail and

fuselage in tables 2.1, 2.2 and 2.3, the coordinates for the center of gravity and

the aerodynamic center in table 2.5 and the mass properties in table 2.6. Finally

the aerodynamics consists in a static data set completed with corrections and a

nonlinear data set.

2.3.1 Baseline Geometry

The geometry describes the aircraft structural components as wings, fuselage

and tails. Besides the parameters for the aircraft surfaces, the body motion also

depends on special ”points” on the aircraft and their relative position as shown

on fig (2.3).

The x-axis reference for the positions in figure (2.3) is different from the

x-body axis since it starts at the aircraft nose and is positive backwards. It

is also noted that the static margin changes with power setting or thrust. An

increase in speed indeed stabilizes the aircraft. Expected static margin variations

range from -6% to 8%. This effect is taken into account in the stability derivatives
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Component Parameter Value Unit

Wing Airfoil NACA 6409

S 150 ft2

b 43.30 ft

c 3.46 ft

A 12.5 nondim

tc 0.09 nondim

tr 1.00 nondim

Λm 0.00 deg

δw 0.0 deg

incidence 4.00 deg

Table 2.1: Geometric Parameters for the Baseline Wing

Z

X

Aircraft nose

Fuselage

Figure 2.3: Relative Position of Important Points
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Component Parameter Value Unit

Tail Airfoil SD8020

S/2 9.13 ft

b/2 5.00 ft

c 1.83 ft

A 5.48 nondim

tc 0.101 nondim

tr 1.00 nondim

Λm 0.00 deg

δw -35.00 deg

incidence -3.00 deg

Arm 3.5cwing ft

Eh 0.3ctail ft

lc 2.5 nondim

StSw 0.1 nondim

Table 2.2: Geometric Parameters for the Baseline Tail

Component Parameter Value Unit

Fuselage length 19.37 ft

diameter 0.25 ft

Table 2.3: Geometric Parameters for Baseline Fuselage
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Component Parameter Value Unit

Propeller diameter 3.00 ft

Table 2.4: Geometric Parameters for the Baseline Propeller

Name Coordinate Unit

Center of gravity x = 73.8 inches

y = 0.0

z = 7.2

Aerodynamic Center x = 73.8 inches

y = 0.0

z = 7.2

Static Margin sm = 0.0 %

Table 2.5: Baseline Reference Points Coordinates
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Weight 205.74 lb

Ixx 2,248,957.00 lb in2

Iyy 651,751.00 lb in2

Izz 2,851,457.00 lb in2

Ixz 21,923.00 lb in2

Table 2.6: Baseline Weight and Inertias

corrections (see 2.4).

2.3.2 Baseline Mass Properties

In the following, the mass and inertias are assumed to remain constant during

the different flight phases. As the airplane uses batteries or solar power, the mass

is not expected to change much.

The aerodynamics of the aircraft are described through stability derivatives.

First static values are computed from aerodynamic codes such as DATCOM. Then

a set of corrections is applied to form the linear set of aerodynamics. Finally strip

theory and wind tunnel data allowed to build a nonlinear set.
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2.4 Baseline Aerodynamics

The aerodynamic forces and moments are assessed through coefficients as:

Drag force D = −q̄SCD
Side force Y = q̄SCY

Lift force L = −q̄SCL
Rolling moment l = q̄ScCl

Pitching moment m = q̄ScCm

Yawing moment n = q̄ScCn

These aerodynamic coefficients are built from stability derivatives that reflect

the influence of the flight parameters such as angle of attack, airspeed, sideslip

and others as:

CL = CL0 + CLαα +
2b

V
CLqq + CLδT δT + CLδAδA (2.21a)

Cm = Cm0 + Cmαα+
2b

V
Cmqq + CmδT δT + CmδAδA (2.21b)

CY = CYββ +
2b

V
CYpp+

2b

V
CYrr + CYδT δT + CYδAδA (2.21c)

Cl = Clββ +
2b

V
Clpp+

2b

V
Clrr + ClδT δT + ClδAδA (2.21d)

Cn = Cnββ +
2b

V
Cnpp+

2b

V
Cnrr + CnδT δT + CnδAδA (2.21e)

The drag coefficient CD is found from the polar of the aircraft. This coefficient

introduces a nonlinearity in the model as it involves a quadratic term. The polar

equation is given by:

CD = CD0 + CDi (2.22a)

CDi = CDk +K (CL − CLK )2, (2.22b)

A first approximation for the stability derivatives is just constant values

forming the static linear set. It can be pointed out that even in the linear static
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CL0 0.94505

Cm0 0.01795

Table 2.7: α = 0 Stability Derivatives

CLα 0.09900

Cmα -0.00630

Table 2.8: Unit α Stability Derivatives (per degree)

set,some stability derivatives are nonlinear functions of the lift coefficient. It has

been ascertained it improved the accuracy of the linear set without using fully

nonlinear aerodynamic coefficients.

2.4.1 Static Stability Derivatives

The stability derivatives are grouped with respect to the influence coefficient.

Table 2.7 presents the longitudinal stability derivatives computed for a zero angle

of attack, table 2.8 the influence of the angle of attack, table 2.9 the influence of

the sideslip angle, tables 2.10, 2.11 and 2.12 the respective influence of the roll

rate, the pitch rate and the yaw rate. finally tables 2.13 and 2.14 show the effect

of control surface deflections. The drag coefficients are summarized in table 2.15.

To be closer to the experimental aerodynamics and still keep a linear data

set, the static stability derivatives need to be corrected.

CYβ -0.00308

Clβ -0.00148

Cnβ 0.00043

Table 2.9: Unit β Stability Derivatives (per degree)
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CYp -0.12820

Clp -0.68668

Cnp -0.12630 CL

Table 2.10: Roll Rate Stability Derivatives (per radian)

CLq 6.79937

Cmq -5.19540

Table 2.11: Pitch Rate Stability Derivatives (per radian)

CYr 0.05959

Clr -0.00206 + 0.3 CL

Cnr -0.01328 - 0024 C2
L

Table 2.12: Yaw Rate Stability Derivatives (per radian)

CLδ 0.00279

Cmδ -0.00613

CYδ 0.00112 reversed sign for left

Clδ -0.00014 reversed sign for left

Cnδ -0.00024 reversed sign for left

Table 2.13: Right Tail Stability Derivatives (per degree)

CLa 0.00706

Cma 0.00076

CYa -0.00200 reversed sign for left

Cla -0.00251 reversed sign for left

Cna 0.00028 reversed sign for left

Table 2.14: Right Wing Twist Stability Derivatives (per degree)
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CD0 0.009400 from 0 to 5K

CDk 0.000453

K 0.024500

CLK -0.02350

Table 2.15: Drag Polar Coefficients

q(psf) CL0+ Cm0+

0.0 0.04182 -0.02719

1.0 0.04053 -0.02513

2.0 0.03946 -0.02337

3.0 0.03856 -0.02185

4.0 0.03780 -0.02053

5.0 0.03716 -0.01937

6.0 0.03661 -0.01833

Table 2.16: Correction in basic data for mass effect

2.4.2 Corrections

The corrections are made to compensate for basic phenomena influencing the

aerodynamics. The phenomena considered here are mass effect, flexibility effect,

ground effect, propulsion effect and dihedral effect.

The corrections are computed as additive or multiplicative factors, denoted

respectively (+) or (x). From these tabulated values, a cubic curve fit is found

for every correction.

The mass effect consists in the deformation of the aircraft shape under its

own weight and depends on dynamic pressure. It affects particularly the basic

data CL0 and Cm0 as shown in table 2.16
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q(psf) CL0+ Cm0+

0.0 0.00000 0.00000

1.0 -0.05004 -0.00199

2.0 -0.10085 -0.00417

3.0 -0.15236 -0.00653

4.0 -0.20468 -0.00906

5.0 -0.25784 -0.01178

6.0 -0.31190 -0.01468

Table 2.17: Correction in basic data for flexibility effect

The flexibility effect accounts for the deformation of the aircraft shape under

static load and therefore depends on the dynamic pressure. It corrects the α and

β stability derivatives, the rotary (p, q, r) stability derivatives and the control

surface stability derivatives as summarized in tables 2.17 through 2.22.

The ground effect models the influence of the gravitational potential at low

altitude and thus depends on the ratio of the wing span to the altitude. It acts

on the α and β stability derivatives and equaly on the control surface stability

derivatives. It also affects the drag polar as shown in tables 2.23 through 2.25.

The propulsion effect reflects in the increase of stability with thrust or thrust

coefficient as defined in chapter (4). It affects the α and pitch rate stability

derivatives illustrated in tables 2.26 and 2.27.

Yet if stall effects are to be modeled, the linear set must be replaced by

nonlinear stability derivatives.
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q(psf) CLα× Cmα+

0.0 1.00000 0.00000

1.0 0.99888 0.00075

2.0 0.99866 0.00140

3.0 0.99918 0.00198

4.0 1.00035 0.00249

5.0 1.00209 0.00296

6.0 1.00435 0.00339

Table 2.18: Correction in unit α data for flexibility effect

q(psf) CYβ× Clβ× Cnβ+

0.0 1.000000 1.000000 0.000000

1.0 0.979715 0.968610 -0.000013

2.0 0.961648 0.937220 -0.000024

3.0 0.945483 0.914798 -0.000033

4.0 0.930903 0.892377 -0.000042

5.0 0.917591 0.869955 -0.000050

6.0 0.905547 0.852018 -0.000058

Table 2.19: Correction in unit β data for flexibility effect
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q(psf) CYp× Clp× Cnp× CLq× Cmq× CYr× Clr× Cnr×
0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0 0.832 1.013 0.616 0.921 0.947 0.972 0.970 0.969

2.0 0.656 1.026 0.199 0.846 0.904 0.947 0.944 0.942

3.0 0.472 1.040 -0.250 0.775 0.868 0.925 0.920 0.918

4.0 0.280 1.054 -0.728 0.706 0.838 0.905 0.899 0.896

5.0 0.081 1.069 -1.229 0.639 0.813 0.887 0.880 0.876

6.0 -0.123 1.085 -1.753 0.574 0.792 0.871 0.863 0.858

Table 2.20: Correction in rotary data for flexibility effect

q(psf) CLδ× Cmδ× CYδ× Clδ× Cnδ×
0.0 1.000000 1.000000 1.000000 1.000000 1.000000

1.0 0.840226 0.885780 0.919632 0.921233 0.922269

2.0 0.706767 0.788270 0.846379 0.849315 0.850840

3.0 0.595865 0.704130 0.779406 0.784247 0.785714

4.0 0.500000 0.630600 0.717874 0.722603 0.724790

5.0 0.417293 0.565680 0.660527 0.667808 0.670160

6.0 0.347744 0.508020 0.607367 0.613014 0.617647

Table 2.21: Correction in tail data for flexibility effect

30



q(psf) CLδa× Cmδa× CYδa× Clδa× Cnδa×
0.0 1.000000 1.000000 1.000000 1.000000 1.000000

1.0 1.008742 1.035535 1.145000 1.014818 1.142800

2.0 1.018093 1.068568 1.290100 1.030191 1.285700

3.0 1.028054 1.098598 1.435200 1.046120 1.428500

4.0 1.038558 1.127627 1.580300 1.062604 1.571300

5.0 1.049671 1.155656 1.725300 1.079830 1.714200

6.0 1.061327 1.182683 1.870400 1.097425 1.857000

Table 2.22: Correction in wing data for flexibility effect

2.4.3 Nonlinear Aerodynamic Coefficients

The nonlinear aerodynamic coefficients are computed from strip theory and wind

tunnel data as a function of angle of attack and control surfaces deflection. Let

us consider the longitudinal dynamics: the stability derivatives CL, CD and Cm

are given as 2-D tables for which a curve fit is found using bicubic spline [WF92].

the 1-D projection is shown below.
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h/b CL0× Cm0× CLα× Cmα× K× CYβ× Clβ× Cnβ×
0.080 1.0837 -0.0379 1.0938 -0.0057 0.6020 1.0711 1.1171 1.0790

0.100 1.0701 -0.0280 1.0758 -0.0038 0.6525 1.0360 1.1044 1.0333

0.150 1.0498 -0.0166 1.0523 -0.0020 0.7322 1.0169 1.0677 1.0125

0.200 1.0377 -0.0109 1.0391 -0.0013 0.7870 1.0106 1.0454 1.0083

0.300 1.0237 -0.0054 1.0244 -0.0006 0.8568 1.0052 1.0223 1.0042

0.400 1.0162 -0.0031 1.0166 -0.0003 0.8979 1.0027 1.0127 1.0021

0.500 1.0116 -0.0019 1.0119 -0.0002 0.9264 1.0016 1.0072 1.0021

0.600 1.0087 -0.0013 1.0089 -0.0001 0.9441 1.0011 1.0048 1.0021

0.800 1.0053 -0.0006 1.0054 -0.0001 0.9649 1.0005 1.0024 1.0021

1.000 1.0035 -0.0004 1.0036 0.0000 0.9766 1.0003 1.0016 1.0021

1.200 1.0024 -0.0002 1.0025 0.0000 0.9828 1.0003 1.0008 1.0021

1.400 1.0018 -0.0002 1.0018 0.0000 0.9882 1.0000 1.0008 1.0021

1.600 1.0013 -0.0001 1.0013 0.0000 0.9912 1.0000 1.0008 1.0021

1.800 1.0010 -0.0001 1.0010 0.0000 0.9939 1.0000 1.0008 1.0021

2.000 1.0008 -0.0001 1.0008 0.0000 0.9944 1.0000 1.0008 1.0000

3.000 1.0002 0.0000 1.0002 0.0000 0.9996 1.0000 1.0000 1.0000

4.000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

Table 2.23: Correction for ground effect
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h/b CLδ× Cmδ× CYδ× Clδ× Cnδ×
0.080 1.1262 1.1669 1.0636 0.9724 1.0531

0.100 1.0667 1.0857 1.0226 0.9379 1.0163

0.150 1.0354 1.0294 1.0067 0.9448 1.0041

0.200 1.0279 1.0137 1.0042 0.9586 1.0000

0.300 1.0200 1.0047 1.0025 0.9724 1.0000

0.400 1.0143 1.0022 1.0017 0.9862 1.0000

0.500 1.0109 1.0012 1.0017 0.9862 1.0000

0.600 1.0083 1.0007 1.0008 0.9931 1.0000

0.800 1.0049 1.0003 1.0008 0.9931 1.0000

1.000 1.0034 1.0002 1.0008 0.9931 1.0000

1.200 1.0023 1.0002 1.0008 1.0000 1.0000

1.400 1.0019 1.0000 1.0008 1.0000 1.0000

1.600 1.0011 1.0000 1.0008 1.0000 1.0000

1.800 1.0011 1.0000 1.0008 1.0000 1.0000

2.000 1.0008 1.0000 1.0008 1.0000 1.0000

3.000 1.0004 1.0000 1.0008 1.0000 1.0000

4.000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.24: Correction in tail data for ground effect
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q(psf) CLδa× Cmδa× CYδa× Clδa× Cnδa×
0.080 1.0392 1.1609 1.1229 1.0538 1.0000

0.100 1.0349 1.0978 1.1026 1.0436 1.0000

0.150 1.0281 1.0122 1.0684 1.0275 1.0000

0.200 1.0237 0.9735 1.0467 1.0183 1.0000

0.300 1.0175 0.9613 1.0233 1.0092 1.0000

0.400 1.0130 0.9695 1.0140 1.0051 1.0000

0.500 1.0099 0.9776 1.0078 1.0029 1.0000

0.600 1.0077 0.9837 1.0047 1.0018 1.0000

0.800 1.0049 0.9919 1.0016 1.0011 1.0000

1.000 1.0034 0.9939 1.0016 1.0007 1.0000

1.200 1.0024 0.9959 1.0000 1.0004 1.0000

1.400 1.0018 0.9980 1.0000 1.0004 1.0000

1.600 1.0014 0.9980 1.0000 1.0004 1.0000

1.800 1.0011 1.0000 1.0000 1.0004 1.0000

2.000 1.0008 1.0000 1.0000 1.0004 1.0000

3.000 1.0003 1.0000 1.0000 1.0004 1.0000

4.000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.25: Correction in wing data for ground effect

34



CT CL0+ CLα+ Cm0+ Cmα+ CYβ+ Cnβ+

-0.40 -0.00084 0.00016 -0.00550 -0.00053 -0.00029 0.00008

-0.30 -0.00126 0.00024 -0.00202 -0.00079 -0.00044 0.00012

-0.20 -0.00162 0.00030 0.00126 -0.00101 -0.00057 0.00015

-0.10 -0.00189 0.00035 0.00425 -0.00118 -0.00066 0.00018

0.00 -0.00211 0.00039 0.00703 -0.00131 -0.00074 0.00020

0.10 -0.00231 0.00043 0.00981 -0.00144 -0.00081 0.00022

0.20 -0.00248 0.00046 0.01245 -0.00155 -0.00087 0.00023

0.30 -0.00262 0.00049 0.01499 -0.00163 -0.00092 0.00025

0.40 -0.00274 0.00051 0.01748 -0.00171 -0.00096 0.00026

0.50 -0.00286 0.00053 0.01994 -0.00178 -0.00100 0.00027

0.60 -0.00297 0.00055 0.02239 -0.00185 -0.00104 0.00028

0.70 -0.00308 0.00057 0.02483 -0.00192 -0.00108 0.00029

0.80 -0.00318 0.00059 0.02725 -0.00198 -0.00111 0.00030

0.90 -0.00328 0.00061 0.02965 -0.00204 -0.00115 0.00031

1.00 -0.00336 0.00063 0.03202 -0.00210 -0.00118 0.00031

Table 2.26: Correction for propulsion effect
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CT CLq+ Cmq+ CYr+ Cnr+

-0.40 0.06017 -0.20105 0.00903 -0.00241

-0.30 0.09026 -0.30157 0.01355 -0.00362

-0.20 0.11584 -0.38702 0.01739 -0.00465

-0.10 0.13539 -0.45236 0.02032 -0.00543

0.00 0.15044 -0.50262 0.02258 -0.00604

0.10 0.16536 -0.55248 0.02482 -0.00663

0.20 0.17735 -0.59254 0.02662 -0.00712

0.30 0.18729 -0.62576 0.02811 -0.00751

0.40 0.19603 -0.65497 0.02942 -0.00786

0.50 0.20420 -0.68226 0.03065 -0.00819

0.60 0.21211 -0.70870 0.03184 -0.00851

0.70 0.21985 -0.73453 0.03300 -0.00882

0.80 0.22722 -0.75916 0.03410 -0.00912

0.90 0.23406 -0.78203 0.03513 -0.00939

1.00 0.24032 -0.80294 0.03607 -0.00964

Table 2.27: Correction for propulsion effect
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Figure 2.4: Nonlinear Drag coefficient vs. angle of attack
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Figure 2.5: Nonlinear Drag coefficient vs. elevator deflection
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Figure 2.6: Nonlinear Lift coefficient vs. angle of attack
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Figure 2.7: Nonlinear Lift coefficient vs. elevator
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Figure 2.8: Nonlinear Moment coefficient vs. angle of attack
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Figure 2.9: Nonlinear Moment coefficient vs. elevator deflection
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CHAPTER 3

Elastic Aircraft Characteristics

The aircraft is now considered to be a flexible body: the effects of elastic forces are

added to the interactions between inertial and aerodynamic forces. This study is

a preliminary work on aeroelasticity analysis applied to the aircraft. The relative

importance of elastic behavior is compared to the rigid body characteristics

developed in chapter 2. In section 3.1 a general approach to aeroelasticity is

introduced. The basic method for obtaining complete equations of motion is

derived using energy methods in section 3.2. Finally, in section 3.3 the result is

applied to the elastic unrestrained aircraft.

3.1 Introduction to Aeroelasticity

Aeroelasticity is present in a large class of aircraft design problems and is often

referred to as the study of the mutual interaction between inertial, aerodynamic

40



dynamic
stability

static
aeroelasticity

dynamic
aeroelasticity

mechanical vibrations

EI

A

control effectiveness
load distribution

divergence
control reversal

SSA
flutter

buffeting
dynamic response

DSA

Figure 3.1: Aeroelasticity Field Illustration

and elastic forces acting on a body. In this section a very brief presentation

of aeroelastic phenomena is introduced, a more detailed study on aeroelastic

phenomena can be found in [Col46] and [RH55]. A visualization of this interaction

is provided in figure (3.1) where the aerodynamic, elastic and inertial forces,

denoted A, E and I, are placed at the vertices of a triangle.

3.1.1 Historical Background

Aeroelastic effects began to play an important role in aircraft design in the early

stages of World War II; as inertial loads stagnated while flight speeds increased,

aircraft structures were not rigid enough to preclude aeroelastic phenomena.

As an example, tail flutter was the most common aeroelastic problem when

both elevators were not connected to the same torque tube. This phenomenon

appeared as a self excited oscillation caused by the coupling between the fuselage

and the tail low frequency modes of vibration. Wing problems appeared when
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designers abandoned biplanes for monoplanes with a much lower torsional rigidity.

Antony Fokker first documented a case in which static aeroelastic effects, such as

wing tip incidence increase with load, combined with steep dive speeds resulted

in high wing torsion and caused the wings of the D-8 to collapse during combat

maneuvers.

3.1.2 Common Phenomena

Some of the most common aeroelastic phenomena are explained below. Their

relationships are illustrated in figure (3.1).

Flutter: any dynamic instability occurring in an aircraft in flight where the

elasticity of the structure plays an essential part in the instability. The

velocity at which this begins is called the ”flutter speed”.

Buffeting: transient vibrations of the aircraft structural components due to

aerodynamic impulse produced by the wake behind wing nacelles, fuselage

pods, or other components of the aircraft.

Dynamic Response: transient response of the aircraft structural components

produced by rapidly applied loads due to gusts, landing, gun recoils, abrupt

control motions, moving shock waves and other dynamic loads.

Aeroelastic Effects on Stability: effect of the structure elastic deformations

on dynamic and static airplane stability.

Load Distribution: influence of elastic deformations of the structure on the

distribution of aerodynamic pressures over the structure.

Divergence: static instability of a lifting surface in flight, at a speed called

divergence speed, where the elasticity of the structure plays an essential
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role in the instability.

Control Effectiveness: influence of elastic deformations of the structure on the

controllability of the airplane.

Control System Reversal: condition occurring in flight at the control reversal

speed, at which the intended effects of displacing a given component of

the control system are completely nullified by elastic deformations of the

structure.

3.2 Lagrange’s Equations

The interest of this study is to define the influence of elastic forces on the aircraft

performance. The rigid body equations of motions need therefore to be refined

for the unrestrained elastic body. One approach is to use energy methods and

more precisely, Lagrange equations.

In [RH55], [BA62] and [Mil64], equations of motion for elastic bodies are

obtained from energy methods rather than from direct application of Newton’s

Laws. The general form of Lagrange’s equations is derived using energy methods

such as the Principle of Virtual Work or equivalently the Principle of Minimum

Total Potential.

3.2.1 Energy Principles

Theorem 3.2.1 (Principle of Virtual Work)

If a body is in equilibrium under the action of prescribed external forces, the

(virtual) work done by these forces in a small additional displacement compatible

with the geometry constraints (virtual displacement) is equal to the change in
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strain energy.

δWe = δU (3.1)

To express equation (3.1) differently, the minimization of the total potential

π = U −We is considered

Theorem 3.2.2 (Principle of Minimum Total Potential)

Among all possible deformation configurations compatible with all the geometric

constraints, the configuration that satisfies the equations of equilibrium is the one

which minimizes the total potential π.

Mathematically, the total potential reaches a stationary value or its first variation

is zero as

δπ = 0 (3.2)

3.2.2 Lagrange’s Equations

Lagrange’s equations are a specialized form of the Principle of Virtual Work.

They apply to holonomic systems: the motion and the eventual constraints

can be fully described by a set of n generalized coordinates {qi}. The term

generalized coordinates means that the qi’s combine polar coordinates with the

usual rectangular coordinates.

Let us consider such an unrestrained three dimensional continuous elastic

body with external forces {F i} applied over its outer surface and inertial forces

applied over its volume. Consequently, the body undergoes a small displacement l̄

with respect to a fixed reference axis system such as the body axes. The generated

work is then the sum of the work obtained from the forces on the surface and

the work from the inertial forces We = Wa + Win. Let us first consider the
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external forces acting on the surface. The resultant force F is expanded into its

components in the reference frame as F = [Fx Fy Fz]
T and the displacement l as

l = [u v w]T .

Let us consider now an additional infinitesimal virtual displacement δl. This

displacement does not actually occurs, it is simply imagined. The work done by

the external force F to create δl is

δWa =
∫

S
F .δl dS =

∫

S
(Fxδu+ Fyδv + Fzδw)dS (3.3)

This work is also virtual since the external forces do not actually work. Any

displacement u, v or w can be expressed in terms of {qi} as

δu =
n∑

i=1

∂u

∂qi
δqi; δv =

n∑

i=1

∂v

∂qi
δqi; δw =

n∑

i=1

∂w

∂qi
δqi (3.4)

By using (3.4) into (3.3), the integrand becomes

Fxδu+ Fyδv + Fzδw =
n∑

i=1

(

Fx
∂u

∂qi
+ Fy

∂v

∂qi
+ Fz

∂w

∂qi

)

δqi (3.5)

Let us consider now the left hand side of equation (3.3). Work is usually

defined as the product of a force and the displacement where the force applies.

In the case of generalized forces this notion can be extended to include generalized

displacements as

δWa =
n∑

i=1
Qi δqi (3.6)

where the generalized forces are denoted Qi. By inspection of equation (3.4), the

generalized forces can be related to F̄ , so that

Qi =
∫

S

(

Fx
∂u

∂qi
+ Fy

∂v

∂qi
+ Fz

∂w

∂qi

)

dS (3.7)
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Virtual displacements due to inertial forces acting on the body volume are

now examined. If the displacement is defined as l = [u v w]T , the inertial force

per unit volume is equal to the acceleration l̈. The generated virtual work is

therefore

δWin = −
∫

V
l̈.δl ρdV = −

∫

V
(üδu+ v̈δv + ẅδw) ρdV (3.8)

As equation (3.5), the integrand is expanded using the generalized coordinates

to obtain

üδu+ v̈δv + ẅδw =
n∑

i=1

(

ü
∂u

∂qi
+ v̈

∂v

∂qi
+ ẅ

∂w

∂qi

)

δqi (3.9)

so that equation (3.8) becomes

δWin = −
n∑

i=1

∫

V

(

ü
∂u

∂qi
+ v̈

∂v

∂qi
+ ẅ

∂w

∂qi

)

ρdV δqi (3.10)

By using the fact that

d

dt

[

u̇
∂u

∂qi
+ v̇

∂v

∂qi
+ ẇ

∂w

∂qi

]

= ü
∂u

∂qi
+ v̈

∂v

∂qi
+ ẅ

∂w

∂qi
+ u̇

∂u̇

∂qi
+ v̇

∂v̇

∂qi
+ ẇ

∂ẇ

∂qi

equation (3.10) becomes

δWin = −
n∑

i=1

∫

V

d

dt

[

u̇
∂u

∂qi
+ v̇

∂v

∂qi
+ ẇ

∂w

∂qi

]

ρ dV δqi

+
n∑

i=1

∫

V

[

u̇
∂u̇

∂qi
+ v̇

∂v̇

∂qi
+ ẇ

∂ẇ

∂qi

]

ρ dV δqi (3.11)

If Introducing the kinetic energy T as

T =
1

2

∫

V
l̇
2
ρ dV =

1

2

∫

V
(u̇2 + v̇2 + ẇ2)ρ dV (3.12)

Using the generalized coordinates, we can define the partial derivatives with

respect to the generalized coordinates and generalized velocities, denoted ∂T
∂qi

and

∂T
∂q̇i

respectively as

∂T

∂qi
=

∫

V

[

u̇
∂u̇

∂qi
+ v̇

∂v̇

∂qi
+ ẇ

∂ẇ

∂qi

]

ρ dV (3.13a)

∂T

∂q̇i
=

∫

V

[

u̇
∂u̇

∂q̇i
+ v̇

∂v̇

∂q̇i
+ ẇ

∂ẇ

∂q̇i

]

ρ dV (3.13b)
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To further simplify equation (3.13), ∂u̇
∂q̇i

must be determined in terms of the

generalized coordinates as

∂u̇

∂q̇i
=

∂

∂q̇i




n∑

j=1

∂u

∂qj

dqj
dt



 =
∂

∂q̇i




n∑

j=1

∂u

∂qj
q̇j



 =
∂u

∂qi
(3.14)

so that equation (3.13) is reduced to

∂T

∂q̇i
=

∫

V

[

u̇
∂u

∂qi
+ v̇

∂v

∂qi
+ ẇ

∂w

∂qi

]

ρ dV (3.15)

Finally, using (3.15) and (3.12), the virtual work due to an inertial force can be

expressed in terms of the kinetic energy as

δWin = − d

dt

n∑

i=1

∂T

∂q̇i
δqi +

n∑

i=1

∂T

∂qi
δqi (3.16)

The last element to be evaluated is the strain energy U . If the strain energy

per unit volume is defined as U0, the change in strain energy is symbolically

expressed as

δU =
∫

V
δU0 dV (3.17)

Since the strain energy per unit volume can also be assessed using the generalized

coordinates, equation (3.17) is equivalent to

∫

V
δU0 dV =

n∑

i=1

∫

V

∂U0

∂qi
δqi dV (3.18)

so that (3.17) becomes

δU =
∞∑

i=1

∂U

∂qi
δqi (3.19)

Finally the virtual work principle is applied and yields

δWe = δWa + δWin = δU (3.20)
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Figure 3.2: Inertial and Body Axis Systems

By expanding (3.20) using (3.16), (3.6) and (3.19), the Lagrange’s equations of

motion are obtained as

n∑

i=1

{

Qi −
d

dt

(
∂T

∂q̇i

)

+
∂T

∂qi

}

δqi =
n∑

i=1

∂U

∂qi
δqi (3.21)

or equivalently,
d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi
+
∂U

∂qi
= Qi (3.22)

3.3 Integrated Equations of Motion

The application of equation (3.23) to the aircraft shall provide the integrated

equations of motion for the unrestrained elastic vehicle.

d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi
+
∂U

∂qi
= Qi, (3.23)

The axis systems considered (fig 3.2) are an inertial frame [X0 Y0 Z0] and the

traditional aircraft body axes [X Y Z].

The position of any point on the body surface is defined by E with respect

to the inertial reference frame. The vector E can be decomposed into R + r as
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X0

Y0

Z0

Xb

Yb

Zb

R

r
e

r0

Figure 3.3: Rigid and Elastic Body Coordinate Systems

shown on figure (3.3). Finally, the local displacement r is the sum of rigid body

displacement r0 and elastic body displacement e.

As a first approximation, only infinitesimal displacements are assumed, so

that the deformed body and the rigid body can both be described in the aircraft

body axis system. The generalized coordinates {qi} can as well be partitioned into

two groups: generalized rigid coordinates {qr} and generalized elastic coordinates

{qe}.

3.3.1 Description of the Elastic Deformation

The deformation of an elastic body can in general be determined by using an

infinite number of generalized coordinates. Practically, this infinite set is reduced
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to the minimum number, say n, required to achieve the desired precision. Still

the degree of freedom n can be too high to integrate the equations of motion

directly. To further simplify the deformation description, simple harmonic motion

is assumed so that there is decoupling between space and time. The in-vacuo

vibration modes ηi’s or normal modes are used as the coordinates instead of the

qi’s. It is commonly asserted that these modes are orthogonal to the rigid body

modes, so that the elastic motion can be treated independently from the rigid

body motion. A more detailed discussion on the transformation is presented

in [Mil64]. Any elastic deformation is now given by

e =
n∑

i=1
Φi(x, y, z)ηi(t) (3.24)

Since the rigid coordinates and the elastic coordinates are independent, the

kinetic and strain energy can be separated into the rigid and elastic components.

3.3.1.1 Kinetic Energy

The kinetic energy obtained from elastic deformations is by definition

T =
1

2
m
de

dt
· de
dt

(3.25)

using equation (3.24), (3.25) becomes

T =
1

2
m

n∑

i=1
Φi(x, y, z)η̇i(t) ·

n∑

j=1
Φj(x, y, z)η̇j(t) (3.26)

Since the modes are normal,

mΦiΦj =






Mi i = j

0 i 6= j
(3.27)

where Mi is called the generalized mass. Finally, equation (3.26) is reduced to

T =
1

2

n∑

i=1
Miη̇

2
i (3.28)
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3.3.1.2 Strain Energy

The strain energy from elastic displacements is by definition

U = −1

2
m

(
d2e

dt2

)

· e (3.29)

using the normal mode expansion in (3.24), equation (3.29) becomes

U = −1

2
m
d2

dt2

(
n∑

i=1
Φiηi

)

·
n∑

j=1
Φjηj (3.30)

Normal coordinates are a base set to describe simple harmonic motion. Their

derivatives can thus be assessed in terms of natural frequency as

η̇i = ωi ηi (3.31)

replacing (3.31) into (3.30) and using (3.27), the strain energy reduces to

U =
1

2

n∑

i=1
Miω

2
i η

2
i (3.32)

3.3.2 Description of the Rigid Motion

3.3.2.1 Kinetic Energy

The kinetic energy T for the rigid body is by definition

T =
1

2
m
d(R + r0)

dt
· d(R + r0)

dt
(3.33)

If the inertial velocity V and the rotation vector ωBI between the inertial and

the body axes are introduced as

V =
dR

dt
(3.34a)

dr0

dt
= ωBI × r0 (3.34b)
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equation (3.33) becomes

T =
1

2
m (V + ωBI × r0) · (V + ωBI × r0) (3.35)

Finally, given the inertia dyadic Ī, equation (3.35) is simplified to

T =
1

2
mV 2 +

1

2
ωBI

T
ĪωBI . (3.36)

3.3.2.2 Potential Energy

There is no strain energy for the rigid body since there is no deformation by

definition. The potential energy is thus composed uniquely of the gravitational

potential energy Ug

Ug = −mgR (3.37)

Lagrange’s formula can now be applied to the elastic and rigid components

to get the equations of motion.

3.3.3 Equations of Motion

Similarly to the coordinates, the generalized forces can be decomposed into elastic

generalized forces and rigid generalized forces. The rigid forces are the traditional

aerodynamic, propulsive and inertial forces as seen in chapter 2. The elastic

forces arise from the action of the rigid forces on the flexible structure. Let Q

be thus partitioned into a rigid and an elastic component as Q = [QR QE ]T .

The generalized rigid coordinates {qr} are further decomposed into rigid linear

displacements and rigid angular displacements. A force QF in QR corresponds to

the linear displacement and a moment QM in QR to the angular displacement .

Finally, the total generalized force is Q = [QF QM QE]T .

Equation (3.23) can now be applied three times.
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Equations (3.36) and (3.37) are separated into linear and angular elements as

TF =
1

2
mV 2 (3.38a)

UF = −mgR (3.38b)

TM =
1

2
ωIB

T · ĪωBI (3.39a)

UM = 0 (3.39b)

The rigid body force equation is obtained by combining equations (3.38) with QF

into (3.23):

m
dV

dt
+m ωIB × V = mg +QF (3.40)

The rigid body moment equation is similarly derived using (3.39) and QM as

m
dωIB

dt
+ ωIB × (Ī · ωIB) = QM (3.41)

Equations (3.40) and (3.41) are the traditional force and moment equations for

a point mass rigid body. They are fully equivalent to the equations derived

from Newton law within the assumption of infinitesimal displacements. If (3.28)

and (3.32) are combined with QE , the elastic equations of motion are finally

assessed as

Miη̈i +Miω
2
i ηi = QEi (3.42)

The damping term was neglected for simplicity, it can be added a posteriori

Miη̈i + 2ζiωiη̇i +Miω
2
i ηi = QEi (3.43)

If QF and QM are obtained from the sum of the forces and moments acting

on the rigid aircraft, QE is computed from potential flow theory and results most

of the time in a complex matrix. A practical form of equation (3.42) for flutter

analysis is a state space representation: QE must then be approximated using a

polynomial curve fit in Laplace domain.
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3.3.4 Approximation Technique for the Generalized Elastic Force

First consider three dimensional unsteady aerodynamics. The forces QEi are

generally computed at a given airspeed (or Mach number) for simple harmonic

motion and at specific values of reduced frequency k defined as

k =
w b

V
(3.44)

where b is the wing semichord and V is the airspeed. QE can be expanded into

its real part and its imaginary part as Q = QR + j QI . A curve fit in the Laplace

domain is found for any given reduced frequency k by using the polynomial

Q̂(k) = A0 + A1 (jk) + A2 (jk)2 +
6∑

l=3

Al (jk)

jk + βl−2
(3.45)

where the set {βl} is arbitrarily selected from the range of reduced frequencies

for which Q has been calculated. The relevant parameter for flutter analysis is

nonetheless not the reduced frequency but the airspeed (or the Mach number).

The curve fit (3.45) is then converted into

Q̂(V ) = A0 + A1
b

V
s+ A2

(
b

V

)2

s2 +
6∑

l=3

Al s

s+ V
b
βl−2

(3.46)

using s = jω and (3.44). The coefficients {Ai} for the curve fit are computed

according to [Abe79].

For each reduced frequency ki, a complex error function is formed

Ei = Q(ki) − Q̂(ki) = Ei
R + jEi

I (3.47a)

Ei
R = Qi

R + [Bi
R][C] (3.47b)

Ei
I = Qi

I + [Bi
I ][C] (3.47c)
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where ER is the real part of the error function and EI the imaginary part. The

coefficients [Bi
R] and [Bi

I ] are obtained from expanding Q̂(jk) as

Q̂(jk) = Q̂R + jQ̂I , (3.48a)

Q̂R = A0 − A2k
2 +

A3k
2

k2 + β2
1

+
A4k

2

k2 + β2
2

+
A5k

2

k2 + β2
3

+
A6k

2

k2 + β2
4

(3.48b)

Q̂I = A1k +
A3β1k

k2 + β2
1

+
A4β2k

k2 + β2
2

+
A5β3k

k2 + β2
3

+
A6β4k

k2 + β2
4

(3.48c)

and then factor using C = [A0 A1 . . . A6]
T , so that finally

Bi
R =

[

−1 0 k2
i

−k2
i

k2
i + β2

1

−k2
i

k2
i + β2

2

−k2
i

k2
i + β3

1

−k2
i

k2
i + β2

4

]

(3.49)

Bi
I =

[

0 ki 0
−β1 ki
k2
i + β2

1

−β2 ki
k2
i + β2

2

−β3 ki
k2
i + β2

3

−β4 ki
k2
i + β2

4

]

(3.50)

Then a least square fit can be passed through N points by setting

∂

∂C

N∑

i=1
(Ei × Ei∗) = 0 (3.51)

The result of this differentiation is the set of normal equations

N∑

i=1

[
(Qi

R + [Bi
R][C]) Bi

R + (Qi
I + [Bi

I ][C]) Bi
I

]
= 0 (3.52)

Equation(3.52) is solved for the coefficient matrix [C] as

C = −
[
N∑

i=1
Bi
R B

iT

R +Bi
I B

iT

I

]−1 N∑

i=1

[
Qi
R B

iT

R +Qi
I B

iT

I

]
(3.53)

By way of illustration, let us consider the reduced quadratic curve fit for the

generalized elastic force

Q̂(V ) = A0 + A1
b

V
s + A2

(
b

V

)2

s2. (3.54)

It should suffice for a quasi steady aerodynamics approximation, which will

provide a good first estimate for the flutter speed. The curve fit (3.54) is
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transformed back into time domain. The elastic equations of motion (3.42)

become in vector form

Mη̈ +MΩη = A0 η + A1

(
b

V

)

η̇ + A2

(
b

V

)2

η̈ (3.55)

where Ω is the diagonal matrix which elements are ω2
i .

The state space representation is finally ascertained as



η̇

η̈



 =




0 I

−K−1 [MΩ − A0] K−1 A1

(
b
V

)








η

η̇



 (3.56)

where

K = M − A2

(
b

V

)2

(3.57)

A further generalization is obtained when considering the complete curve fit

in (3.46). It is now a good approximation for unsteady aerodynamics. The

interest in studying the effect of the complete fit is that a lower flutter speed can

be found. It has already been the case experimentally. The drawback is that the

state space is now higher order and many ”non physical” modes are introduced.

In order to solve the eigenvalue problem of (3.42), equation (3.46) needs to be

expanded as

DQ̂(V ) = D



A0+A1
b

V
s+A2

(
b

V

)2

s2



 + s(A3+A4+A5+A6) (3.58a)

with (3.58b)

D =
(
s+

V

b
β1

) (
s+

V

b
β2

) (
s+

V

b
β3

) (
s+

V

b
β4

)
(3.58c)

= s4 + b3 s
3 + b2 s

2 + b1 s+ b0 (3.58d)

b3 =
V

b
(β1 + β2 + β3 + β4) (3.58e)

b2 =
(
V

b

)2

[β1β2 + β3β4 + (β1 + β2)(β3 + β4)] (3.58f)

b1 =
(
V

b

)3

[β3β4(β1 + β2) + β1β2(β3 + β4)] (3.58g)
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b0 =
(
V

b

)4

β1β2β3β4 (3.58h)

Then the state space representation is obtained by replacing (3.58) in (3.42) as

(η(4) + b3η
(3) + b2η̈ + b1η̇ + b0η)(Mη̈ +MΩη)

= Ã6η
(6) + Ã5η

(5) + Ã4η
(4) + Ã3η

(3) + Ã2η̈ + Ã1η̇ + Ã0η,
(3.59)

where the superscript (i) means the ith derivative. Equation (3.59) is equivalently

expressed in matrix form as





η̇

η̈

η(3)

η(4)

η(5)

η(6)





=





0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

γ1 γ2 γ3 γ4 γ5 γ6









η

η̇

η̈

η(3)

η(4)

η(5)





(3.60)

where

Ã0 = A0b0 (3.61a)

Ã1 = A3 + A4 + A5 + A6 (3.61b)

Ã2 = A0b2 + A1b1
b

V
+ A2b0

(
b

V

)2

(3.61c)

Ã3 = A0b3 + A1b2
b

V
+ A2b1

(
b

V

)2

(3.61d)

Ã4 = A0 + A1b3
b

V
+ A2b2

(
b

V

)2

(3.61e)

Ã5 = A1
b

V
+ A2b3

(
b

V

)2

(3.61f)

Ã6 = A2

(
b

V

)2

(3.61g)

γ1 = (MΩb0 − Ã0)/(M − Ã6) (3.61h)
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Figure 3.4: Root Locus for a Quadratic Curve Fit

γ2 = (MΩb1 − Ã1)/(M − Ã6) (3.61i)

γ3 = (M2Ωb0b2 − Ã2)/(M − Ã6) (3.61j)

γ4 = (M2Ωb1b3 − Ã3)/(M − Ã6) (3.61k)

γ5 = (M2Ωb2 − Ã4)/(M − Ã6) (3.61l)

γ6 = (Mb3 − Ã5)/(M − Ã6) (3.61m)

Eventual flutter can be observed through the migration of the eigenvalues.

The roots in the loci (3.4) and (3.5) originate from the undamped modes and

migrate in branches or combination of modes. When two branches coalesce at a

certain speed VF , flutter arises. The relevant aircraft modes are summarized in

table 3.1.

A different approach is to consider the effect of the elastic deformation on the
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Number Description Frequency (Hz) Gene. mass

R1 rigid fore-aft 0 5.329559 10−1

R2 rigid side 0 5.329559 10−1

R3 rigid plunge 0 5.329559 10−1

R4 rigid roll 0 5.825710 103

R5 rigid pitch 0 1.688300 103

R6 rigid yaw 0 7.388493 103

1 1st wing bending (sym) 1.02 1.000000

2 1st aft fuselage bending (asym) 2.26 1.000000

3 1st aft fuselage torsion 2.83 1.000000

4 1st fuselage bending (sym) 2.99 1.000000

5 1st fuselage bending (asym) 3.33 1.000000

6 1st wing yawing (sym) 4.12 1.000000

7 2nd wing bending (asym) 4.28 1.000000

8 1st tail bending (sym) 6.10 1.000000

9 2nd wing bending (asym) 6.44 1.000000

10 1st wing torsion (sym) 8.05 1.000000

11 1st wing torsion (asym) 8.79 1.000000

12 2nd aft fuselage bending (asym) 9.98 1.000000

13 2nd fuselage bending (sym) 10.18 1.000000

14 3rd wing bending (asym) 12.49 1.000000

15 1st rudder torsion (sym) 12.91 1.000000

16 1st rudder torsion (asym) 13.50 1.000000

17 1st rudder bending (sym) 12.56 1.000000

18 2nd wing yawing (asym) 14.38 1.000000

19 2nd wing yawing (sym) 15.72 1.000000

20 2nd fore fuselage bending (asym) 16.69 1.000000

Table 3.1: Relevant Rigid and Elastic Modes
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aircraft stability derivatives.

3.3.5 Estimation of Stability Derivatives

The lift and moment expansions as seen in chapter 2 can also include the elastic

modes as

CL = CLR + CLE (3.62a)

Cm = CmR + CmE (3.62b)

where CLR and CmR are the rigid components as in equation (2.21). The elastic

part is obtained from the real and imaginary parts of the generalized elastic force

Q. The following definitions come from the aerodynamic addition to NASTRAN.

The typical flutter problem arises from the combination of the pitch mode or

pitching moment and the plunge mode or normal force. As a first approximation,

only the effect of the longitudinal elastic modes on the lift and moment are being

considered as CLE and CmE are expanded into

CLE = CLη1
η1 + CLη2

η2 + CLη3
η3 + CLη4

η4

+CLη5
η5 + CLη6

η6 + CLη7
η7 (3.63a)

CmE = Cmη1
η1 + Cmη2

η2 + Cmη3
η3 + Cmη4

η4

+Cmη5
η5 + Cmη6

η6 + Cmη7
η7 (3.63b)

where the η are described in table 3.1. The coefficients are determined from

CLηi
= −QR (2, i+ 3)

S
(3.64a)

Cmηi
=

QR (3, i+ 3)

S c
(3.64b)

where QR is the real part of the generalized elastic force matrix, S is the wing

area and c = 2b the mean aerodynamic chord.
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Figure 3.6: Effect of the first Wing Bending on the Normal Force

The effect of the elastic modes on the normal force or equivalently lift in the case

of zero angle of attack together with the effect on pitching moment are presented

in figures (3.6) through (3.17).
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Figure 3.7: Effect of the first Fuselage Bending on the Normal Force
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Figure 3.8: Effect of the first Tail Bending on the Normal Force
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Figure 3.9: Effect of the second Wing Bending on the Normal Force
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Figure 3.10: Effect of the first Wing Torsion on the Normal Force
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Figure 3.11: Effect of the second Fuselage Bending on the Normal Force
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Figure 3.12: Effect of the first Wing Bending on the Pitching Moment
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Figure 3.13: Effect of the first Fuselage Bending on the Pitching Moment
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Figure 3.14: Effect of the first Tail Bending on the Pitching Moment
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Figure 3.15: Effect of the second Wing Bending on the Pitching Moment
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Figure 3.16: Effect of the first Wing Torsion on the Pitching Moment
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Figure 3.17: Effect of the second Fuselage Bending on the Pitching Moment

68



CHAPTER 4

Propulsion

The equations of motion for the rigid body depend on the forces acting on

the body. If the aerodynamic forces and inertial forces relate directly to the

structural properties of the aircraft, the thrust however is obtained from a distinct

component: the propulsion system. This module is composed of a geared electric

motor, energy supplies as solar cells or batteries and a propeller. In section 4.1

the parameters values for each of these components are shown. In section 4.2 a

theoretical approach to compute thrust is used to estimate the propulsion force in

the best case. Finally the experimental data is presented for increased accuracy.

4.1 General Parameters

The motor delivers 2.5 horsepower with an efficiency of 90%. Its dynamics are

modeled as a first order system with break frequency ωm at about 3 rad, so that

the associated differential equation is
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ω̇out
ωm

+ ωout = Vin (4.1)

where ωout is the angular rate produced by the motor when the input voltage is

Vin.

The propeller is a 7 ft long wooden helix with 85% efficiency. For low altitude

flights however, the length of the propeller is reduced to 3 ft. The batteries

generate 4 horsepower each and are mounted in series in the fuselage. Finally if

the aircraft is solar powered, cells cover 90% of the wing area with an efficiency

of 12.5%.

4.2 Estimating Thrust

Thrust can be computed using two different approaches:

1. Momentum Theory provides thrust as a function of efficiencies and airspeed.

This is the best case.

2. Experimental data on the propeller + motor ensemble provide a thrust

coefficient as a function of airspeed and rpm.

Solar power can finally be used for the autonomous high altitude configuration.

This will be the subject of chapter 5.

4.2.1 Momentum Theory

Consider an ideal infinitively thin actuator disk with an area S which offers no

resistance to the air passing through it. It is also assumed that the velocity of the
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Figure 4.1: Ideal Infinitively Thin Actuator Disk

air through the disk is constant over the whole area. The fluid is moving uniformly

a long way ahead of the disk with a speed of V and a pressure P0. Streamlines

on fig(4.1) represent the envelope of the flow passing through the disk. As it

approaches the disk, the fluid accelerates to V0 and its pressure decreases to P1.

At the disk, pressure increases to P2 but continuity forces the speed to remain

constant. Behind the disk, the air expands, accelerating until the pressure is back

to P0, the speed being Vs. Thrust is then given from the pressure gradient as

T = S ∆P = S (P2 − P1) (4.2)

To express ∆P in term of the airspeed, Bernoulli’s equation is applied between

region 1 (ahead of the disk) and region 2 (behind the disk),

P0 +
1

2
ρ V 2 = P1 +

1

2
ρ V 2

0 (4.3a)

P2 +
1

2
ρ V 2

0 = P0 +
1

2
ρ V 2

s (4.3b)

If equations (4.3) are combined, equation (4.2) reduces to

P2 − P1 =
1

2
ρ (V 2

s − V 2) (4.4a)

T =
1

2
ρ S (V 2

s − V 2) (4.4b)
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The power supplied to the disk as a function of the airspeed is deduced from

equations (4.4) as

Ws =
1

2
ρ S V0 (V 2

s − V 2) (4.5)

The useful work is by definition

Wu = T V (4.6)

Using (4.5) and (4.6), the efficiency of the disk is

ηi =
Wu

Ws
=

T V
1
2ρ S V0 (V 2

s − V 2))
=
V

V0
(4.7)

Replacing (4.7) in (4.5), thrust is also obtained in terms of the power supplied as

T =
Ws

V0
(4.8)

The momentum theory provides the ”best” case solution as any propulsive

system will always have less than the momentum theory efficiency ηi. Moreover

the motor characteristics need be added when computing Ws. Indeed the power

supplied is globally definite in terms of the motor + propeller efficiencies and the

maximum power supplied by the motor using batteries or solar power. Let ηp be

the propeller efficiency, ηm the motor efficiency and Pmax
m the maximum power

supplied by the motor, then the thrust finally becomes

Ws = Pmax
m ηp ηm (4.9a)

T =
Pmax
m ηp ηm
V0

(4.9b)

Most of the time, the relevant quantity for design or performance analysis is

not the thrust itself but the thrust coefficient CT . A simple way to relate the

thrust T and the thrust coefficient CT is to derive functional expressions for T .

Let us consider an airscrew of diameter D doing n revolutions per second at
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a linear speed V , driven by a torque Q and supplying a thrust T . The air is

characterized by its density ρ, its kinematic viscosity ν and its modulus of bulk

elasticity K. A functional form for the thrust would then be

T = T (D, n, ρ, ν,K, V ) = C Da nb ρc νd Ke V f (4.10)

If a dimension analysis to find a,b,c,d,e,f is conducted, (4.10) becomes

T = C D4 n2 ρ f

([
ν

D2n

]d [
K

ρD2n2

]e [
V

n D

]f)

(4.11)

The bracketed factors are functionals of the Mach number M , the Reynolds

number Re and the advance ratio or distance advanced by revolution J .

T = C D4 n2 ρ h(Re,M, J) (4.12)

The constant C and the function h(·, ·, ·) are usually collected together to form

the thrust coefficient CT . Hence

T = CT D
4 n2 ρ (4.13)

If the thrust is expressed in terms of dynamic pressure (4.13) becomes

q̄ =
1

2
ρV 2 (4.14a)

V = Dn (4.14b)

T = (2q̄ D2) CT (4.14c)

4.2.2 Experimental Data

Consider the functional for the thrust coefficient, where CT depends on the

airscrew design, the Mach number M ,the Reynolds number Re and the advance

ratio J . The dependencies are found experimentally in terms of airspeed and
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Figure 4.2: Experimental Approximation for the Thrust Coefficient

rpm: the flight range of the aircraft is well within incompressible flow,the relevant

parameter is not really Mach number and Reynolds number but simply airspeed

and similarly rpm is more commonly used than advance ratio. The results are

plotted in figure (4.2).

CT = h(Re,M, J) (4.15)

CT = h̄ (rpm, V ) (4.16)
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CHAPTER 5

Solar Powered Propulsion

A special addition to the aircraft model is the solar powered configuration. The

use of solar energy was not meant for the baseline prototype but represents a long

term feature for autonomous flight. The aircraft wings are modified to be covered

at 90% with light and flexible solar panels. Based on available technology, the

solar cells have a 12.5% efficiency.

The power available from solar energy is determined by projecting the solar

incidence vector onto the normal to the wing. The result is the power supplied

by the motor. Finally, thrust is obtained using momentum theory as explained

in chapter 4. For simplicity, the wing is assumed to be a flat rigid plate, so that

camber, dihedral and structural modes can be neglected. The derivation of the

solar incidence vector towards the Earth is defined in the Ptolemaic point of view,

so that the Sun rotates around a fixed Earth. First the transformations between

the different coordinate systems are ascertained.
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Figure 5.1: Heliocentric-Ecliptic (Global) Coordinate system

5.1 Systems of Coordinates

To describe the relative position of the sun and the aircraft to the Earth, three

coordinate systems are needed [BMW71].

5.1.1 Heliocentric-Ecliptic Coordinates

The heliocentric-ecliptic coordinate system or also called global coordinate system

Î is sun centered with the (̂, k̂) plane defining the ecliptic, or the plane of the

Earth revolution around the sun. The direction of ̂ is defined by the line of

intersection between the ecliptic and the Earth equatorial plane as shown in

figure (5.1).

76



Xe

Ye Ze

Xh

Yh
Zh

Figure 5.2: Topocentric Right Ascension/Declination (Local Horizontal)

Coordinate system

5.1.2 Topocentric Right Ascension/Declination Coordinates

The topocentric right ascension/declination coordinate system or also called local

horizontal frame is closely related to the traditional geocentric equatorial axis

system: Xh is oriented North. The plane (Yh, Zh) is parallel to the equatorial

plane with Yh oriented East and Zh West as shown in figure (5.2).

5.1.3 Body Axis Coordinates

The body axis coordinate system is fixed to the aircraft and centered at the

gravity center. X is aligned with the fuselage and points forwards, Z is positive

downwards and Y comes out of the right wing as shown in figure (5.3).
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Figure 5.3: Aircraft Body Axis system

5.2 Deriving Solar Incidence in Body Axes

To describe the sun’s virtual motion in the Local Horizontal frame, three rotations

are considered (fig. 5.4):

1. Rotation around ̂ of angle δ.

The declination angle δ represents the inclination of the Earth equatorial

plane with respect to the ecliptic. Declination depends on the season. For

example it is positive for summer in the northern hemisphere.

This rotation transforms (̂ı, ̂, k̂) into (X1, ̂, Z1).

2. Rotation around X1 of angle ψ.

The longitude angle ψ is measured eastwards in the equatorial plane from

YH . ψ depends on the time of day due to Earth’s rotation.

This rotation transforms (X1, ̂, Z1) into (X1, Y , Z1).

3. Rotation around Y of angle λ.

The latitude λ is the elevation angle from the equatorial plane. Latitude is
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k

Figure 5.4: Declination, longitude and latitude angle definition

positive for the northern hemisphere. In our case, the latitude is fixed to

34◦N since it is approximately the latitude of Los Angeles.

This last rotation transforms (X1, Y , Z1) into (X, Y , Z).

Hence the transformation H between the global and the local horizontal

coordinates can be determined from the multiplication of these three fundamental

matrices as

H =






cosδ 0 − sinδ

0 1 0

sinδ 0 cosδ











1 0 0

0 cosψ sinψ

− sinψ 0 cosψ











cosλ 0 − sinλ

0 1 0

sinλ 0 cosλ






(5.1)

If the computations are carried out, equation (5.1) becomes

H =





cosλ cosδ − sinλ cosψ sinδ sinλ sinψ − cosλ sinδ − sinλ cosψ cosδ

sinψ sinδ cosψ sinψ cosδ

sinλ cosδ + cosλ cosψ sinδ − cosλ sinψ − sinλ sinδ + cosλ cosψ cosδ





(5.2)
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As the distance between the Earth and the Sun is large compared to their

radius, solar rays can be approximated by vectors pointing along k̂. Therefore,

only the last column of H is necessary to obtain the sun attitude in the body

axes (X, Y , Z) as

S =





− cosλ sin δ − sinλ cosψ cos δ

sinψ cos δ

− sinλ sin δ + cos λ cosψ cos δ




(5.3)

The solar incidence is the angle between the normal to the wing and the solar

attitude vector S. As a first approximation, wing camber, dihedral, and bending

are neglected, so that the wing is just a flat plate with a unique normal. The solar

attitude vector S is converted in the body axes using the matrix transformation

T in section 2.1 as

S = T · S (5.4)

The unit normal to the wing in the body axes is by definition [0, 0, 1]T . The

solar incidence is finally determined from the dot product between the normal

and equation (5.4) as:

s = (sinψ sinφ+ cosψ sin θ cosφ)(− cosλ sin δ − sinλ cosψ cos δ)

+ (− cosψ sin φ+ sinψ sin θ cosφ) sinψ cos δ

+ cos θ cosφ (− sinλ sin δ + cosλ cosψ cos δ)

(5.5)

To implement equation (5.5) in a dynamic simulation, the declination δ is related

to the season and the longitude φ to the time of day. The former relation is

obtained by assimilating the year to a circle with the correcting factor k=360/365.

Then the seasons, separated by equinoxes and soltices, are defined as 0 for spring,

270 for summer, 180 for fall and 90 for winter. The latter relation follows from

the longitude angle increase of 15◦ per hour from the take off (TO) time.
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In summary,

δ = 0 / 90 / 180 / 270 (5.6a)

ψ = (TTO +
t

3600
) 15◦

π

180
(5.6b)

λ = 34◦ (5.6c)

Once the solar incidence s is computed, a correction for atmospheric absorption

needs to be added as:

s̃ =
1

2

[
e−0.65 c + e−0.095 c

]
(5.7a)

c =
(√

1229 + (614 s)2 − 614 s
)

P

2116.2
(5.7b)

where P is the pressure. Finally s̃ is converted in Watts, so that for a 90% wing

coverage and 12.5% solar cell efficiency, the power generated is

p = (126s̃ s)
90

100

12.5

100

p̃ =
p

745

with p in watts and p̃ its horsepower equivalent. Finally, using the momentum

theory, the maximum power supplied by the propulsive system is

Pmax = p ηm ηp

where ηm and ηp are the efficiencies of the motor and the propeller. The thrust

is then

T =
Pmax

V
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CHAPTER 6

Sensors and Actuators Models

6.1 Actuation

Actuated surfaces on the aircraft are the wings and the tails. The controls are

formed by the wing tip actuators which twist the whole wing and the tail actuators

which make the rudder-elevator pivot. The wing twists are only asymmetric to

generate roll whereas rudder-elevator motions are both symmetric and asymmetric

to create pitch and yaw respectively. Both wing tip and tail actuators are modeled

as first order systems with a break frequency ωa of 4rad, so that the governing

differential equation is
∆̇out

ωa
+ ∆out = ∆in (6.1)

where ∆ represents the angular deflection of the control surface.
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Sensor Location Sensor Type

wing tip vertical accelerometer

tail vertical and lateral accelerometers

center of gravity vertical, lateral and forward

accelerometers and gyroscopes

wing leading edge α and β probes

nose airspeed helix

motor load cell

Table 6.1: Location of Sensors

6.2 Sensors

The equations of motion provide ”exact” values for the aircraft states. Practically,

most of the states are measured from sensors. A list of the available measurements

on the baseline is given in table 6.2. The sensors include accelerometers, gyroscopes

and air data boom. To be closer to reality, the measurements are corrupted by

band limited noise as explained in section 6.2.2.

6.2.1 Sensor Measurements

6.2.2 Sensor Noise

The measurements are corrupted by added limited noise or colored noise to be

closer to the real instrumentation performance. The statistics associated with

each measurement noise are shown in table 6.3. This noise is obtained by passing

a zero mean purely random process or white noise process through a shaping

filter as

η̇ = −A (η − wn)
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Longitudinal sensors measures Lateral sensors measures

Normal acceleration Lateral acceleration

Forward acceleration Sideslip

Angle of Attack Roll rate

Pitch rate Yaw rate

Pitch angle Roll angle

Altitude Heading angle

Table 6.2: List of Measurement Available on the Baseline

Z

Y

X

Zb

Yb

Xb

(xb,yb,zb)E

O

P

Figure 6.1: Accelerometer position in the body axes
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Sensor Measure Bandwidth Variance

Accelerations 50 hz 0.0001 ft2

sec3

Angular rates 50 hz 0.0001deg
2

sec3

Inertial Angles and position 10 hz 0.04deg
2

sec

Air Data (α, β) 10 hz 1deg
2

sec

Table 6.3: Measurement Noise Statistics

where A is the bandwidth in hertz and ωn the white noise input.

6.2.3 Modeling Noisy Measurements

By way of illustration, let us consider accelerometer measurements. If y represents

the vector of all measurements, then y is related to the states as:

y = C x + η

where η is the associated measurement noise as described in section 6.2.2.

6.2.3.1 Longitudinal Mode - Normal and Forward Accelerations

The measurement vector y is defined by

y =






Az

Ax

αt

q

θ






+






ηAz

ηAx

ηαt

ηq

ηθ






where Az is the normal acceleration, Ax the forward acceleration, αt = αi +αg is

the total angle of attack, q the pitch rate and θ the pitch angle. The vector η is

the measurement noise vector. Since the angle of attack α = w/V , the pitch rate
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q and the pitch angle θ are already states, an expression for y is straightforward

as soon as the accelerations are derived as

y =





CAz

CAx

0 1/V 0 0

0 0 1 0

0 0 0 1









u

w

q

θ





+ η

where V is the craft airspeed.

The accelerometer position is denoted (xb, zb) in the body axes (Xb, Yb, Zb) as

shown in figure (6.1). The aircraft center of gravity has (x, y, z) for coordinate in

the inertial frame. The acceleration is the sum of the acceleration at the center

of gravity and the relative acceleration at the accelerometer as

a =
d2

dt2
(EO + OP) =

d2

dt2
(xX + zZ + xbXb + zbZb) (6.2)

with the linear approximations θ̇ = q, ẋ = u and ż = w, equation (6.2) becomes

a = (u̇+ q w − q2xb + q̇zb) Xb + (ẇ − q u− q2zb − q̇xb) Zb (6.3)

where u is the longitudinal speed and w the vertical speed. The inertial angle of

attack αi is related to u and w as

w ∼ u αi for small αi, so that ẇ ∼ uα̇i

Hence, if a = Ax Xb + Az Zb in g unit, the acceleration components are obtained

by inspection of equation (6.3) as

Ax =
(u̇+ q uαi − q2xb + q̇zb)

g

Az =
(uα̇i − q u− q2zb − q̇xb)

g
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where g is the gravity at sea level. The sensor outputs are then fed into the

autopilot. However, the autopilot input is not directly measurements but small

perturbations from reference values obtained after trim and denoted by a 0

subscript as

αi = αi0 + α′ (6.4a)

α̇i = α̇′
i (6.4b)

u = u0 + u′ (6.4c)

u̇ = u̇′ (6.4d)

q = q0 + q′ (6.4e)

q̇ = q̇′ (6.4f)

Finally, the noisy perturbed accelerations are approximated to first order as

Ax =
(u̇′ + q′ u0αi0 − q′2xb + q̇′zb)

g
+ ηAx (6.5a)

Az =
(u0α̇i − q′ u0 − q′2zb − q̇′xb)

g
+ ηAz (6.5b)

6.2.3.2 Lateral Mode - Lateral Acceleration

We proceed similarly with the lateral accelerometer described by (xb, yb) in the

body axes. The measurement vector y is

y =





Ay

βt

p

r

φ

ψ





+





ηAy

ηβt

ηp

ηr

ηφ

ηψ




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where βt is the total sideslip βt = βi + βg, p the roll rate, r the yaw rate, φ the

bank angle and ψ the heading angle. The acceleration is given by

a =
d2

dt2
((xX + yY + xbXb + ybYb) (6.6)

using the linear approximations r = ψ̇, ẋ = u and ẏ = v, equation (6.6) becomes

a = (u̇− ṙyb − r(v + r xb)) Xb + (v̇ + ṙxb + r(u+ r yb)) Yb (6.7)

where v is the lateral speed and is approximated by v ∼ u0βi. The acceleration

components finally are

Ax =
(u̇′ − ṙ′yb − r′u0βi0 − r′2xb)

g
+ ηAx (6.8a)

Ay =
(u0β̇i + ṙ′xb + r′u0 − r′2yb)

g
+ ηAy (6.8b)
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CHAPTER 7

Atmospheric Turbulence

The simulation would not represent accurate flight conditions without a turbulence

model. Indeed, the very light structure of the aircraft is very sensitive to winds.

Atmospheric turbulence can be decomposed into two parts: steady winds and

gusts. The gusts then consist in continuous turbulence or discrete gusts at a

specific frequency.

For simulation purposes, the atmospheric turbulence is restrained to continuous

wind gusts. The statistical description of such a stochastic process leads to

the derivation of Bryson wind gust model which provides differential stochastic

equations for continuous 3-D wind gust. This model is then combined with

the military specifications on continuous turbulence for low and medium/high

altitude. In further studies, discrete gusts will be used to test the aircraft
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structural response when specific modes are excited. Finally some model limits

are stated when the atmospheric layers properties are considered. First let us

emphasize the need for a stochastic model of continuous turbulence.

The detailed structure of a well developed turbulent flow appears to be not

measurable,unpredictable, and even indescribable because of its complexity. The

flow follows nonetheless the Navier-Stockes differential equations of fluid dynamics

and still appears to be evolving in a random fashion. Therefore, statistical

techniques can be applied to characterize the flow motion. The introduction

of statistics is only due to our limited abilities and not because of inherent

randomness. What really happens in a turbulent flow is that the velocity at

one point is a consequence of so many complex interactions between the velocity

components themselves and the turbulent structures of all sizes that it has the

nature of a random variable. Thus the statistical approach gives us predictable

quantities.

The wind turbulence model combines two fundamental elements: a white

noise input shaped according to the mil-spec-F-8587C and dynamics defined by

Bryson’s model. A detailed description of necessary tools to study stochastic

processes is provided in appendix B.

7.1 Military Specifications for Noise Input

Mil-F-8785C [Ano80] provides statistical characteristics for the wind turbulence

input. In particular, magnitude for continuous turbulence and discrete gusts is

given in terms of standard deviation as a function of altitude and gust strength:
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light, moderate or severe). However, no dynamics are discussed.

7.1.1 Continuous and Discrete Turbulence Spectra

For the continuous model of turbulence, two principal forms are encountered: the

Von Karman form and the Dryden Form. When feasible, the Von Karman form

should be preferred in order to get a correspondence between the flying qualities

and the structural analyses. If the Von Karman form is not feasible, or when no

structural studies are carried out in parallel, the Dryden form can be used.

The Von Karman spectra are given by :

Φug(Ω) = σ2
u

2Lu
π

1

[1 + (1.339LuΩ)2]5/6 (7.1a)

Φvg(Ω) = σ2
v

Lv
π

1 + 8/3(1.339LvΩ)2

[1 + (1.339LvΩ)2]11/6 (7.1b)

Φwg(Ω) = σ2
w

Lw
π

1 + 8/3(1.339LwΩ)2

[1 + (1.339LwΩ)2]11/6 (7.1c)

The Dryden Spectra are given by :

Φug(Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)2 (7.2a)

Φvg(Ω) = σ2
v

Lv
π

1 + 3(LvΩ)2

[1 + (LvΩ)2]2
(7.2b)

Φwg(Ω) = σ2
w

Lw
π

1 + 3(LwΩ)2

[1 + (LwΩ)2]2
(7.2c)

The discrete gust model v = f(x) has the ”1− cos” shape, but ramp and step

functions can also be used. The scales and intensities of this model should be

taken equal to those in the Dryden model, so that

v = 0 x < 0

v = Vm
2

(
1 − cos πx

dm

)
0 ≤ x ≤ dm

v = Vm x > dm
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This model is useful to assess the aircraft response in case of large disturbances.

It can be used singly or in multiples. dm shall be used in order to tune each of the

craft natural frequencies and the flight control system frequencies, maybe with

the exception of the higher structural modes. For severe intensities, modes with

wavelength less than the length scale can be used.

However, discrete gusts have not been implemented yet. Further study on the

excitable modes should be carried out. Model parameters consist in the length

scale L or dm and the gust magnitude σ or Vm.

7.1.2 Medium/High Atmosphere Parameters

The main assumption for these altitudes is that after 2,000 ft, isotropy prevails.

Therefore,

σu = σv = σw

Lu = Lv = Lw

The length scales are constant with altitude and depend only on the spectra form

chosen as

Li = 2, 500 ft for the Von Karman form

Li = 1, 750 ft for the Dryden form

The root-mean-square (RMS) standard deviation σ depends on altitude as

shown in figure (7.1).

7.1.3 Low Altitude Parameters

The low altitude model is valid for all operations in category C, that is terminal

flight phases such as
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1. take off (TO)

2. catapult take off (CT)

3. approach (PA)

4. wave off - go around (WO)

5. landing (L)

Low altitude wind profile is characterized by wind shear effects. The isotropy

hypothesis is non valid and the gaussian approximation can lead to errors. The

scalar wind shear is obtained from the logarithmic profile [PD84] as

uw = U20
ln(h/z0)

ln(20/z0)

where

z0 = 0.15 ft for all category C flight phases

z0 = 0.2 ft for all other flight phases

U20 is the mean wind velocity at 20 ft and depends on probability of exceedance

as shown in figure (7.2).

The standard deviation is finally determined as

σw = 0.1U20

with σu and σv are functions of σw and altitude.

7.2 Continuous Turbulence Dynamics

The gusts dynamics are derived following Bryson’s or Dryden’s model. Section 7.2.1

presents the hypotheses, then the model is derived in section 7.2.2.
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Figure 7.1: High Altitude Turbulence Intensity
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Figure 7.2: Low Altitude Turbulence Intensity
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7.2.1 Hypotheses for Wind Turbulence Modeling

The model assumes a statistical description of the wind gust velocity as in

chapter B, and follows [HB77]. The wind gust velocity is considered to be

a random vector at each point in space and time and the distributions are

approximated as Gaussian.

The hypotheses for the flow field are

Stationarity This assumption means for a stochastic process that the mean

value vector is time invariant and the correlation functions only depend on

time separation. This approximation is valid for time scales less than a few

minutes.

Frozen Field This assumption implies that the wind velocity is random vector

field whose correlations depend only on spatial separation. Indeed, the

correlations between wind gust velocity components at points fixed to the

mean air motion at a given time separation τ is greater than the correlation

between points separated by the distance V τ . This assumption is valid

when V > U/3 where U is the mean wind speed.

Homogeneity This is the spatial equivalent to stationarity. In the atmosphere,

free turbulence is approximately homogeneous in all directions, whereas

near the ground the wind gusts vary with altitude. If we assume however

that the terrain is relatively uniform, the homogeneity hypothesis becomes

valid.

Nearly Horizontal Flight This assumption has been made to drop the effects

of vertical separations compared the to corresponding horizontal separations.

It is expected that for flight path angles less than ten degrees, the error
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induced by only considering horizontal separations will be less than one

percent of the variance.

Isotropy This assumption states that there is no dependence of the random

vector field upon the orientation of the coordinate system. Measurements

in the atmosphere indicate that above the lowest surface layer, the wind

gust velocity is very nearly isotropic, validating this hypothesis for heights

above 2000 ft. For lower altitudes, the variance and scale of the vertical

gust are smaller than the ones of the horizontal components, moreover

the correlation between horizontal and vertical gusts is not any more zero.

Specifically, large scale length mechanisms inducing turbulent energy, such

as mean wind shear and thermal buoyancy are truly anisotropic. A better

assumption than complete homogeneity introduces locally homogeneous

increments in the stochastic field.

Similarity Hypothesis This assumption concerns the parameters determining

the structure of a flow field. The scale variation function with respect to

height should be considered different at low altitudes where the flow is not

isotropic and at high altitudes where the isotropic hypothesis becomes valid.

7.2.2 Bryson’s Model

First let us define the following nomenclature

96



h Height (ft)

u Longitudinal component of the aircraft velocity (ft/s)

L Integral scale / scale length function (ft)

b Wing span (ft)

β Aircraft size parameter

t time (s)

dt integration step (s)

x Longitudinal separation (ft)

σ Rms gust velocity (ft/s)

η Zero-mean white noise process

The model deals in general with white noise inputs to dynamic systems . The

output is an approximation of the gust and gust gradients in the sense that their

correlations along the flight path are nearly the same. Let the system dynamics

be

Ẋ = FX + Γη (7.3)

where η is a zero mean white noise process with correlation of the form

E[η(t1)η(t2)
T ] = QIδ(t1 − t2) (7.4)

where Q is called power spectral density. The state covariance χ(t) can be

determined from

χ̇ = Fχ+ χF T + qΓΓT (7.5)

and the correlation function from

Ċ(t, t0) = FC(t, t0); C(t, t) = χ (7.6a)

C(t, t0)
△
= E[X(t)X(t0)

T ] and t ≥ t0 (7.6b)
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Integration of equation (7.6) yields

C(t1, t0) − C(t0, t0) = F
∫ t1
t0

C(t, t0)dt (7.7a)

F = [C(t1, t0) − C(t0, t0)][
∫ t1
t0

C(t, t0)dt]
−1 (7.7b)

In short, given a correlation function C(t1, t0), the scheme is to compute F from

equations (7.7) and then obtain Γ using equation (7.5). For convenience Γ is

chosen to be upper triangular.

This procedure is now applied to the wind gust and wind gust gradients.

Their components can be divided into four uncorrelated groups U0, (W0,Wx),

(V0, Vx, Uy), Wy
1. The appropriate F and Γ matrices are computed using (7.5),

(7.6), (7.7) and a correlation function of the Karman form. The integration

interval chosen is four times the scale variation L, so that the results are quite

insensitive to small changes in the interval length.

7.2.2.1 Global Longitudinal and Lateral Models

Equation (7.3) is expanded for the gust and gust gradients as

∂

∂x





W0

Wx

U0




=





f11 f12 f13

f21 f22 f23

f31 f32 f33









W0

Wx

U0




+





γ12 γ13

γ22 γ23

γ32 γ33








η1

η2



(7.8a)

∂

∂x





V0

Vx

Uy

Wy





=





f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f̄33 f34

f41 f42 f43 f44









V0

Vx

Uy

Wy





(7.8b)

1The symbol x here stands for the distance along the flight path and not the state. The
subscripts 0, x and y mean averaged uniform, longitudinal gradient and lateral gradient (resp.).
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+





γ12 γ13 γ14

γ22 γ23 γ24

γ32 γ̄33 γ34

γ42 γ43 γ44









η1

η2

η3




(7.8c)

E[η(x1)η
T (x2)] = QI δ(x1 − x2) (7.8d)

If numerical results are examined, f11, f13, f14, f23, f24, f32, f34, f41, f42, f43, γ12,

γ13, γ14, γ24, γ32, γ34, γ42, γ43 are zeros, f12 is approximated to 1 as expected and

f21, f22, γ22 are the same for both longitudinal and lateral models. For the other

coefficients, functions are found to match closely the numerical results by using

a least squares fit of a function of the general form

f(β) =
α1 + α2β

α3

α4 + α5βα6

Finally the global model is given by

∂

∂x





W0

Wx

U0




=





0 1 0

f21 f22 0

0 0 f33









W0

Wx

U0




+





0 0

γ22 0

0 γ33








η1

η2



 (7.9a)

∂

∂x





V0

Vx

Uy

Wy





=





0 1 0 0

f21 f22 0 0

f31 0 f33 0

0 0 0 f44









V0

Vx

Uy

Wy





(7.9b)

+





0 0 0

γ22 γ23 0

0 γ33 0

0 0 γ44









η1

η2

η3




(7.9c)

with

f21L
2 = −(1 + β)2/3β−4/3
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f22L = −0.5(1 + 3β)β4/3

f33L = −(1 + 1.5β)2/3(1 + 3β)−1

f33L = −0.4(1 + 2β)β−1

f44 = 1.5f33

γ22 = −f21

γ23L
2 = −0.23β−4/3

γ33 = −1.4f33

γ33L
2 = 1.33β−1

γ44L
2 = 1.67β−1

where the aircraft size parameter β and the length scale L are defined as

β =
b

2L

L = k
h h0

h+ h0
h0 = 2500 ft k = 0.8

L = kh for low altitude

7.2.2.2 Simplified Longitudinal and Lateral Model

For a small aircraft, lateral wind gust gradients are negligible, so only the following

groups are needed: U0, (W0,Wx), (V0, Vx). The wind velocity in the longitudinal

direction is deduced from a first order differential equation, whereas for both

lateral and vertical directions the governing differential equations are second

order, so that

∂

∂x
Uw = f33Uw + γ33ηx (7.10a)

∂2

∂x2Vw = f21Vw + f22
∂

∂x
Vw + γ22ηy1 + γ23ηy2 (7.10b)

∂2

∂x2Ww = f21Ww + f22
∂

∂x
Ww + γ22ηz (7.10c)
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The white noise process ηy1 and ηy2 are independent and normally distributed.

Since adding two gaussian distributions results in a gaussian distribution, the

lateral white noise term can be simplified to (γ22 + γ33)ηy.

This wind gust model uses the spatial variable x as the independent variable.

For flight simulation it is more convenient to solve time varying wind gusts. The

transformation is done using the inertial aircraft longitudinal velocity u and the

chain rule
∂(·)
∂t

=
∂(·)
∂x

· dx
dt

=
∂(·)
∂x

· u (7.11)

Equations (7.10) then become

∂U

∂t
= u f33 U + u γ33 ωx (7.12a)

∂2V

∂t2
= u2f21V + uf22

∂V

∂t
+ u2(γ22 + γ23) ωy (7.12b)

∂2W

∂t2
= u2f21W + uf22

∂W

∂t
+ u2γ22 ωz (7.12c)

Then [Ano80] is used to find the power spectral density for the white noise

inputs in terms of the model parameters as

Qωx = −2
f33

u γ2
33
σ2
x (7.13a)

Qωy = 2
f21 f22

u (γ22 + γ23)2 σ
2
y (7.13b)

Qωz = 2
f21 f22

u γ2
22

σ2
z (7.13c)

Finally, miscellaneous remarks on the structure of the atmospheric layers help

keep in mind the restrictions on the model.
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7.3 Atmospheric Layer Structure

Each atmospheric layer has its own characteristics concerning turbulence, so that

some restrictions or simplifications can apply for a more realistic simulation of

wind gusts.

7.3.1 The Planetary Boundary Layer

The Planetary Boundary Layer is usually the first kilometer of the atmosphere.

This region is completely turbulent over day and quite calm over night. The

scale height of the turbulence highly depends on the terrain, the season and

the daytime. Moreover, the flow in the PBL can no longer be described as an

isotropic phenomenon as the correlation between longitudinal and vertical flows

is no longer zero and the scale and distribution of the vertical component are

smaller than the scale and distribution of the longitudinal one.

Panofsky [PD84] proposes to extend the logarithmic profile of the wind in the

PBL to different coefficients for each distribution, so as to model an anisotropic

3D flow.

7.3.2 Free Atmosphere

The free atmosphere is the region just above the PBL and goes up to the lower

stratosphere. There is basically no turbulence but just mean wind (ex. the Jet

Stream).

7.3.3 High Altitude

The High Altitude domain represents the lower and upper part of the stratosphere.

The frequency of the turbulence goes down very quickly. However, the turbulent
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flow has no longer a gaussian behavior and, as a result, extreme values can

happen more than predicted. Reeves [Ree] proposed a simulation for non gaussian

behavior.
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CHAPTER 8

Linearized Equations of Motion for

Simulation Validation

The 6 degree of freedom non linear equations of motion are linearized about a

reference state vector X0 in order to provide an independently derived analytical

linear model. The nonlinear equations are decoupled into three groups: three

equations for positioning, four equations for longitudinal motion and five equations

for lateral motion. The dynamics of the airplane only depend on the last two

groups, positioning considerations are thus dropped. This model is used to

validate the nonlinear simulation when the motion stays in the linear range.

The equations of motion are also linearized for an arbitrary reference state in

section 8.1.4 for completeness and account for the moment translation to the

center of gravity when the static margin is non zero. As derived in chapter 2, the
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nonlinear equations of motion are

φ̇ = p+ tan θ(q sinφ+ r cos φ) (8.1a)

θ̇ = q cosφ− r sin φ (8.1b)

ψ̇ =
1

cos θ
(q sinφ+ r cosφ) (8.1c)

u̇ = X̃ + g cos θ cosφ− qw + rv (8.1d)

v̇ = Ỹ + g cos θ sinφ− ru+ pw (8.1e)

ẇ = Z̃ + g cos θ − pv + qu (8.1f)




L̃

M̃

Ñ




=





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









ṗ

q̇

ṙ





+





p

q

r




×





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









p

q

r




(8.1g)

where X̃, Ỹ , Z̃, L̃, M̃ and Ñ are the body axis force and moment resultants

scaled by the mass.

8.1 Independent Analytical Linear Model

Prior to linearization the notations need be lain down. The subscript 0 denotes

a reference quantity about which the linearization is done. As examples, forces

and states are perturbed as follows

F = F0 + F̄ (8.2a)

X = X0 + X̄ (8.2b)

The reference state X0 is obtained after trim so that
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1. There is no lateral motion: ψ = φ = β = v = 0

2. There is no acceleration: p = q = r = 0

3. There are no forces and moments: X = Y = Z = L = M = N = 0

Equations (8.1) are perturbed from the reference as denoted in (8.2)

(φ0 + φ̄)′ = (p0 + p̄)

+ tan(θ0 + θ̄)[(q0 + q̄) sin(φ0 + φ̄)

+(r0 + r̄) cos(φ0 + φ̄)] (8.3a)

(θ0 + θ̄)′ = (q0 + q̄) cos(φ0 + φ̄) − (r0 + r̄) sin(φ0 + φ̄) (8.3b)

(ψ0 + ψ̄)′ =
1

cos(θ0 + θ̄)
[(q0 + q̄) sin(φ0 + φ̄)

+(r0 + r̄) cos(φ0 + φ̄)] (8.3c)

(u0 + ū)′ = (X̃0 + ˜̄X) + g cos(θ0 + θ̄) cos(φ0 + φ̄)

−(q0 + q̄)(w0 + w̄) + (r0 + r̄)(v0 + v̄) (8.3d)

(v0 + v̄)′ = (Ỹ0 + ˜̄Y ) + g cos(θ0 + θ̄) sin(φ0 + φ̄)

−(r0 + r̄)(u0 + ū) + (p0 + p̄)(w0 + w̄) (8.3e)

(w0 + w̄)′ = (Z̃0 + ˜̄Z) + g cos(θ0 + θ̄)

−(p0 + p̄)(v0 + v̄) + (q0 + q̄)(u0 + ū) (8.3f)




L̃0 + ˜̄L

M̃0 + ˜̄M

Ñ0 + ˜̄N




=





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









(p0 + p̄)′

(q0 + q̄)′

(r0 + r̄)′





+






p0 + p̄

q0 + q̄

r0 + r̄





×






Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz











p0 + p̄

q0 + q̄

r0 + r̄






(8.3g)

Replacing the reference states by their values and dropping the superscript on
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the perturbed values, equations (8.3) become

φ̇ = p+ tan(θ0 + θ)(q sinφ+ r cosφ) (8.4a)

θ̇ = q cosφ− r sinφ (8.4b)

ψ̇ =
1

cos(θ0 + θ)
(q sinφ+ r cosφ) (8.4c)

u̇ = X̃ + g cos(θ0 + θ) cosφ− q(w0 + w) + rv (8.4d)

v̇ = Ỹ + g cos(θ0 + θ) sin φ− r(u0 + u) + p(w0 + w) (8.4e)

ẇ = Z̃ + g cos(θ0 + θ) − pv + q(u0 + u) (8.4f)




L̃

M̃

Ñ




=





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









ṗ

q̇

ṙ





+





p

q

r




×





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









p

q

r




(8.4g)

The trigonometric functions are linearized as

cos(θ0 + θ) = cos θ0 cos θ − sin θ0 sin θ = cos θ0 − θ sin θ0 (8.5a)

sin(θ0 + θ) = cos θ0 sin θ + sin θ0 cos θ = θ cos θ0 + sin θ0 (8.5b)

tan(θ0 + θ) =
tan θ0 + tan θ

1 + tan θ0 tan θ
=

tan θ0 + θ

1 + θ tan θ0
(8.5c)

Neglecting second order terms and using the small angle approximation, (8.4)

finally reduces to

φ̇ = p+ r tan θ0 (8.6a)

θ̇ = q (8.6b)

ψ̇ =
r

cos θ0
(8.6c)

u̇ = X̃ + g(cos θ0 − θ sin θ0) − qw0 (8.6d)
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v̇ = Ỹ + gφ cos θ0 − ru0 + pw0 (8.6e)

ẇ = Z̃ + g(cos θ0 − θ sin θ0) + qu0 (8.6f)




L̃

M̃

Ñ




=





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









ṗ

q̇

ṙ




(8.6g)

The purpose of linearization is to rewrite the equations of motion with the

form

ẋ = Ax+Bu (8.7)

where x is the state vector and u the control vector. To obtain equation (8.7),

forces and moments must now also be expressed in terms of the states and

controls. A partial differential expansion is used as

X̃ = X̃uu+ X̃ww + X̃qq + X̃θθ +Xδδ (8.8a)

Z̃ = Z̃uu+ Z̃ww + Z̃qq + Z̃θθ + Z̃δδ (8.8b)

M̃ = M̃uu+ M̃ww + M̃qq + M̃θθ + M̃δδ (8.8c)

Ỹ = Ỹvv + Ỹpp+ Ỹrr + Ỹφφ+ Ỹψψ + Ỹδδ (8.8d)

L̃ = L̃vv + L̃pp+ L̃rr + L̃φφ+ L̃ψψ + L̃δδ (8.8e)

Ñ = Ñvv + Ñpp+ Ñrr + Ñφφ+ Ñψψ + Ñδδ (8.8f)

In the linearization process, longitudinal and lateral motions are completely

decoupled. The partial derivatives are determined from the stability derivatives.

Hence forces and moments need be transferred back to the stability axes as





X̃

Ỹ

Z̃




=





cosβ cosα − cosα sin β − sinα

sin β cosβ 0

sinα cosβ − sinα sin β cosα









−D
lat

−L




(8.9a)
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



L̃

M̃

Ñ




=





cosβ cosα − cosα sin β − sinα

sin β cosβ 0

sinα cosβ − sinα sin β cosα









l

m

n




(8.9b)

8.1.1 Longitudinal Model

To stay consistent with the linearization hypotheses, the small angle approximation

is also used for the angle of attack α and the sideslip angle β so that

α =
w

u
(8.10a)

β =
v

u
(8.10b)

For simplicity, let us introduce the dynamic pressure q̄ = 1
2 ρ V 2. The partial

derivatives of the forces and moments are evaluated as follows

8.1.1.1 Find the u derivatives

X̃u =
∂

∂u
(−D − β lat+ αL) =

∂

∂u

(
1

2
ρV 2S

)
(−CD − βCY + αCL)

X̃u = q̄S
(

2u

V 2

)
(−CD − βCY + αCL) + q̄S

∂

∂α
(−CD − βCY + αCL)

∂α

∂u

X̃u = q̄S
(

2u

V 2

)
(−CD + α CL) + q̄S(−CDα + CL + α CLα)

−w
u2 (8.11a)

Z̃u =
∂

∂u
(−αD − αβlat− L) =

∂

∂u

(
1

2
ρV 2S

)
(−αCD − αβCY − CL)

Z̃u = q̄S
(

2u

V 2

)
(−αCD − αβCY − CL) + q̄S

∂

∂α
(−αCD − αβCY − CL)

∂α

∂u

Z̃u = q̄S
(

2u

V 2

)
(−αCD − CL) + q̄S(−αCDα − CLα)

−w
u2 (8.11b)

M̃u =
∂

∂u
(βl +m) =

∂

∂u

(
1

2
ρV 2Sc

)
(βCl + Cm)

M̃u = q̄Sc
(

2u

V 2

)
(βCl + Cm) + q̄Sc

∂

∂α
(βCl + Cm)

∂α

∂u

M̃u = q̄Sc
(

2u

V 2

)
Cm + q̄ScCmα(

−w
u2 ) (8.11c)
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8.1.1.2 Find the w derivatives

X̃w =
∂

∂w
(−D − βlat+ αL) =

∂

∂w

(
1

2
ρV 2S

)
(−CD − βCY + αCL)

X̃w = q̄S
(

2w

V 2

)
(−CD − βCY + αCL) + q̄S

∂

∂α
(−CD − βCY + αCL)

∂α

∂w

X̃w = q̄S
(

2w

V 2

)
(−CD + αCL) + q̄S(−CDα + CL + αCLα)

1

u
(8.12a)

Z̃w =
∂

∂w
(−αD − αβlat− L) =

∂

∂w

(
1

2
ρV 2S

)
(−αCD − αβCY − CL)

Z̃w = q̄S
(

2w

V 2

)
(−αCD − αβCY − CL) + q̄S

∂

∂α
(−αCD − αβCY − CL)

∂α

∂w

Z̃w = q̄S
(

2w

V 2

)
(−αCD − CL) + q̄S(−αCDα − CLα)

1

u
(8.12b)

M̃w =
∂

∂w
(βl +m) =

∂

∂w

(
1

2
ρV 2Sc

)
(βCl + Cm)

M̃w = q̄Sc
(

2w

V 2

)
(βCl + Cm) + q̄Sc

∂

∂α
(βCl + Cm)

∂α

∂w

M̃w = q̄Sc
(

2w

V 2

)
Cm + q̄ScCmα(

1

u
) (8.12c)

8.1.1.3 Find the q derivatives

X̃q = q̄S(−CDq + α CLq) (8.13a)

Z̃q = q̄S(−α CDq − CLq) (8.13b)

M̃q = q̄Sc(Cmq) (8.13c)

8.1.1.4 Find the δ derivatives

X̃δ = q̄S(−CDδ + α CLδ) (8.14a)

Z̃δ = q̄S(−α CDδ − CLδ) (8.14b)

M̃δ = q̄Sc(Cmδ) (8.14c)
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8.1.2 Lateral Model

We proceed similarly to the longitudinal model using the dynamic pressure q̄ = 1
2ρV

2.

8.1.2.1 Find the v derivatives

Ỹv =
∂

∂v
(−βD + lat) =

∂

∂v

(
1

2
ρV 2S

)
(−βCD + CY )

Ỹv = q̄S
(

2v

V 2

)
(−βCD + CY ) + q̄S

∂

∂β
(−βCD + CY )

∂β

∂v

Ỹv = q̄S(−CD + CYβ)
1

u
(8.15a)

L̃v =
∂

∂v
(l − βm− αn) =

∂

∂v

(
1

2
ρV 2Sb

)
(Cl − βCm − αCn)

L̃v = q̄Sb
(

2v

V 2

)
(Cl − βCm − αCn) + q̄Sb

∂

∂β
(Cl − βCm − αCn)

∂β

∂v

L̃v = q̄Sb(Clβ − Cm − αCnβ)
1

u
(8.15b)

Ñv =
∂

∂v
(αl − αβm+ n) =

∂

∂v

(
1

2
ρV 2Sb

)
(αCl − αβCm + Cn)

Ñv = q̄Sb
(

2v

V 2

)
(αCl − αβCm + Cn) + q̄Sb

∂

∂β
(αCl − αβCm + Cn)

∂β

∂u

Ñv = q̄Sb(αClβ − αCm + Cnβ)
1

u
(8.15c)

8.1.2.2 Find the p derivatives

Ỹp = q̄SCYp (8.16a)

L̃p = q̄Sb(Clp − αCnp) (8.16b)

Ñp = q̄Sb(αClp + Cnp) (8.16c)

8.1.2.3 Find the r derivatives

Ỹr = q̄SCYr (8.17a)

111



L̃r = q̄Sb(Clr − αCnr) (8.17b)

Ñr = q̄Sb(αClr + Cnr) (8.17c)

8.1.2.4 Find the δ derivatives

Ỹδ = q̄SCYδ (8.18a)

L̃δ = q̄Sb(Clδ − αCnδ) (8.18b)

Ñδ = q̄Sb(αClδ + Cnδ) (8.18c)

8.1.3 Drag and Thrust

The drag partial derivatives are determined from the polar equation

CD = CD0 + CDi +K(CL − CKL)2 (8.19)

The partial differentials are obtained from equation (8.19) as

CDα =
∂CD
∂α

= 2K(CL − CKL)CLα (8.20a)

CDq =
∂CD
∂q

= 2K(CL − CKL)CLq (8.20b)

CDδ =
∂CD
∂δ

= 2K(CL − CKL)CLδ (8.20c)

The thrust partial derivatives are part of the force partial derivatives and need

to be added. The thrust is assumed of the form

T̃ =
T̃0

V
(8.21)

Then, by differentiating (8.21), the partial derivatives are obtained as

T̃u =
∂T̃

∂u
=
T̃0

V 2u (8.22a)
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T̃v =
∂T̃

∂v
=
T̃0

V 2v (8.22b)

T̃w =
∂T̃

∂w
=
T̃0

V 2w (8.22c)

8.1.4 Extension to an Arbitrary Reference

From section 8.1 the perturbed equations of motion about a state reference X0

are

(φ0 + φ̄)′ = (p0 + p̄)

+ tan(θ0 + θ̄)[(q0 + q̄) sin(φ0 + φ̄)

+(r0 + r̄) cos(φ0 + φ̄)] (8.23a)

(θ0 + θ̄)′ = (q0 + q̄) cos(φ0 + φ̄) − (r0 + r̄) sin(φ0 + φ̄) (8.23b)

(ψ0 + ψ̄)′ =
1

cos(θ0 + θ̄)
[(q0 + q̄) sin(φ0 + φ̄)

+(r0 + r̄) cos(φ0 + φ̄)] (8.23c)

(u0 + ū)′ = (X̃0 + ˜̄X) + g cos(θ0 + θ̄) cos(φ0 + φ̄)

−(q0 + q̄)(w0 + w̄) + (r0 + r̄)(v0 + v̄) (8.23d)

(v0 + v̄)′ = (Ỹ0 + ˜̄Y ) + g cos(θ0 + θ̄) sin(φ0 + φ̄)

−(r0 + r̄)(u0 + ū) + (p0 + p̄)(w0 + w̄) (8.23e)

(w0 + w̄)′ = (Z̃0 + ˜̄Z) + g cos(θ0 + θ̄)

−(p0 + p̄)(v0 + v̄) + (q0 + q̄)(u0 + ū) (8.23f)





L̃0 + ˜̄L

M̃0 + ˜̄M

Ñ0 + ˜̄N






=






Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz











(p0 + p̄)′

(q0 + q̄)′

(r0 + r̄)′





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+





p0 + p̄

q0 + q̄

r0 + r̄




×





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz









p0 + p̄

q0 + q̄

r0 + r̄




(8.23g)

In this section, the reference state vectorX0 is arbitrary. However a trimmed

state expects forces and moments be balanced. Therefore, X̃0 = Ỹ0 = Z̃0 = L̃0 =

M̃0 = Ñ0 = 0. Similar to the previous analysis the trigonometric functions are

expanded using (8.5) and the second order terms neglected.

Equations (8.23) then become

˙̄φ = (p0 + p̄) + tan θ0(1 − θ tan θ0)[q0 sin φ0 + r0 cosφ0]

+ tan θ0[q sinφ0 + φq0 cos φ0

+r cos φ0 − φr0 sin φ0] (8.24a)

˙̄θ = q0(cosφ0 − φ sinφ0) + q cos φ0

−r0(sin φ0 + φ cosφ0) − r sinφ0 (8.24b)

˙̄ψ =
1

cos θ0
(1 + θ tan θ0)[q0 sin φ0 + r0 cosφ0]

+
1

cos θ0
[φq0 cosφ0 + q sinφ0

−φr0 sinφ0 + r cos φ0] (8.24c)

u̇ = X̃ + g[(cos θ0 − θ sin θ0) cosφ0 − φ cos θ0 sin θ0]

−(q0w0 + q0w + qw0) + (r0v0 + r0v + rv0) (8.24d)

v̇ = Ỹ + g[(cos θ0 − θ sin θ0) sinφ0 + φ cos θ0 cosφ0]

−(r0u0 + r0u+ ru0) + (p0w0 + p0w + pw0) (8.24e)

ẇ = Z̃ + g(cos θ0 − θ sin θ0)

−(p0v0 + p0v + pv0) + (q0u0 + q0u+ qu0) (8.24f)

Ixxṗ− Ixy q̇ − Ixz ṙ = L̃+ Izx(q0p0 + q0p+ qp0) + Izy(q
2
0 + 2q0q)

−Izz(q0r0 + q0r + qr0)
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−Iyx(r0p0 + r0p+ rp0) + Iyy(r0q0 + r0q + rq0)

−Iyz(r2
0 + 2r0r) (8.24g)

−Iyxṗ+ Iyy q̇ − Iyz ṙ = M̃ − Ixx(r0p0 + r0p+ rp0) + Ixy(r0q0 + r0q + rq0)

+Ixz(r
2
0 + 2r0r)

−Izx(p2
0 + p0p) − Izy(p0q0 + p0q + pq0)

+Izz(p0r0 + p0r + pr0) (8.24h)

−Izxṗ− Izyq̇ + Izz ṙ = Ñ + Iyx(p
2
0 + 2p0p) − Iyy(p0q0 + p0q + pq0)

+Iyz(p0r0 + p0r + r0p)

+Ixx(p0q0 + q0p+ qp0) − Ixy(q
2
0 + 2q0q)

−Ixz(r0q0 + q0r + qr0) (8.24i)

8.1.5 Including Moment Transfer to the Center of Gravity

The previous development considered the center of gravity at the location of the

aerodynamic center, so that the aerodynamic moments need not be transferred.

Assume the distance between the aerodynamic center and the center of gravity

is in the body axes δ = [δ1 δ2 δ3]
T , the total aerodynamic moment at the center

of gravity is then




L̃cg

M̃cg

Ñcg




=





L̃ac

M̃ac

Ñac




+





δ1

δ2

δ3




×





X̃

Ỹ

Z̃




(8.25)

If expanding (8.25) the complete differentiation with respect to a variable z yields

∂L̃cg
∂z

=
∂L̃ac
∂z

+ δ2
∂Z̃

∂z
− δ3

∂Ỹ

∂z
(8.26)

∂M̃cg

∂z
=

∂M̃ac

∂z
+ δ3

∂X̃

∂z
− δ1

∂Z̃

∂z
(8.27)
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∂Ñcg

∂z
=

∂Ñac

∂z
+ δ1

∂Ỹ

∂z
− δ2

∂X̃

∂z
(8.28)

Then the procedure to obtain the partial derivatives of the aerodynamic forces

and moments follows section 8.1. In addition to the analytical linear model, a

numerical model is derived from the nonlinear equations using central differences.

8.2 Numerical Linear Model

As for the analytical model, the non linear equations of motion are linearized

about a reference point given by the trim algorithm. A central difference method

is then used [WF92]. Now the non linear dynamics can be checked against linear

dynamics predicted by the linear models thereabove.

8.3 Simulation Dynamics Validation

The simulation dynamics are only checked since the three models, nonlinear,

analytical and numerical linear share the same aerodynamical and structural

elements for the aircraft model. However, the linear models differ from the non

linear model if non linearities are introduced outside the dynamics, for example

in the aircraft properties. This will restrain the validation process to a simpler

structural and aerodynamical aircraft model.

8.3.1 Simplified Aircraft Model for Validation

Non linearities in the aircraft model come exclusively from the aerodynamics.

As shown in 2.4, the aircraft linear stability derivative set is based on static

data augmented with corrective factors for a better accuracy. These corrections
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are functions of dynamic pressure, thrust coefficient, altitude and load factor; in

short, they depend on parameters also driving the equations of motion. Therefore

they cannot be active for the purpose of validating the non linear simulation

against linear models. The aircraft aerodynamics are thus restricted to the static

data set. Now the three models can be compared.

8.3.2 Validation Results

Step response for the longitudinal and the lateral motion are compared. Increase

of 0.5◦ in symmetric tail or elevator creates the pitch step response, 0.5◦ in

asymmetric tail or rudder generates yaw step response and 0.5◦in asymmetric

wing twist induces roll step response. The two linear models consists in linear

differential equations of the form

Ẋnum = AnumXnum +BnumUnum (8.29a)

Ẋana = AanaXana +BanaUana (8.29b)

Equations (8.29) are then integrated using MATLAB and compared to the output

of the non linear simulation. As shown in figures (8.1) through (8.6), the three

step responses agree perfectly.

The dynamics are validated. The aerodynamics were checked against an

independent non linear simulation developed at Rockwell International Seal Beach

using SIMULINK. The same step inputs were used with the corrections added

one by one. Similarly, the responses agreed closely. The simulation tool is now

validated, the open loop characteristics of the aircraft can now be described.
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Figure 8.1: Pitch Rate Step Response to +0.5◦ step in Elevator for the three

dynamics
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Figure 8.2: Pitch Angle Step Response to +0.5◦ step in Elevator for the three

dynamics
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Figure 8.3: Bank Angle Step Response to +0.5◦ step in Wing Twist for the three

dynamics
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Figure 8.4: Roll Rate Step Response to +0.5◦ step in Wing Twist for the three

dynamics
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Figure 8.5: Heading Angle Step Response to +0.5◦ step in Rudder for the three

dynamics
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Figure 8.6: Yaw Rate Step Response to +0.5◦ step in Rudder for the three

dynamics
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CHAPTER 9

Open Loop Simulation

9.1 Open Loop Dynamics

The open loop modes and eigenvectors of the aircraft are shown in table 9.1 for

the longitudinal and lateral dynamics. Recall that the longitudinal states are

XL = [u w q θ]T and the lateral states Xl = [v p r φ ψ]T .

These values were computed for a fixed reference at q̄ = 1.4, h = 5,000ft,

γ = 0 and no wing twist. They are modified when any reference parameter

changes such as stability derivatives, thrust effect or location of the center of

gravity. The following study on robustness of the aircraft modes with respect

to these parameter variations is then conducted. In section 9.2, the stability

derivatives are perturbed, in section 9.3 the robustness to thrust coefficient is

studied and finally the ”best” location for the center of gravity is determined in

section 9.4.
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Mode Eigenvalue Eigenvector

phugoid λ = −0.0465 ± 0.5092i u =






0.0457 − 0.7073i

−0.0002 + 0.1860i

−0.0015 − 0.0059i

−0.6912 + 0.2277i






Short period
λ1 = −4.3109

λ2 = −2.3397
u1 =





0.1844

−0.9338

−0.0230

0.3058





u2 =





−0.3334

0.4883

0.0329

−0.8058





Roll mode λ = -7.2625 u =





0.1874

0.1222

0.0170

0.96531

−0.1338





Dutch roll λ = −0.5311 ± 0.9668i u =





−0.2104 − 0.6096

−0.0041 + 0.0048i

−0.0132 + 0.0015i

0.3239 + 0.0718i

0.3977 + 0.5619





Spiral mode λ = 0.1149 u =





−0.0890

−0.0003

−0.0020

−0.1792

−0.9798





Table 9.1: Eigenvalues and Eigenvectors for Longitudinal and Lateral Modes
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Stability Derivative Percentage Uncertainty

CLα 5%

Cmα 10%

Cmq 20%

Cnβ 15%

Cnp 90%

Cnr 25%

Clβ 20%

Clp 15%

Table 9.2: List of Perturbed Stability Derivatives

9.2 Robustness to Uncertainty in Stability Derivatives

Following [Ros79], we perturbed the ”most important” stability derivatives from

their nominal value, that is taken from the corrected linear set. The perturbation

percentage and the list of stability derivatives studied are given in table 9.2.

The effect(s) of the perturbation is analyzed both in Laplace domain and

time domain, through root loci and step responses for each stability derivative as

shown in figures (9.1) through (9.16). The analysis does not show an important

sensitivity to all parameters.

9.3 Robustness to Thrust Coefficient

Another important parameter needs to be considered. The thrust, as stated

in 2.4, plays a significant role in the stability of the aircraft. However, it is not

a quantity known with great precision since it is indirectly measured from the

motor rpm. The thrust coefficient is perturbed from its nominal value obtained
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Figure 9.1: Pitch Rate Step Response for CLα Variations
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Figure 9.2: Root Locus for CLα Variations
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Figure 9.3: Pitch Rate Step Response for Cmα Variations
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Figure 9.4: Root Locus for Cmα Variations
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Figure 9.5: Pitch Rate Step Response for Cmq Variations
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Figure 9.6: Root Locus for Cmq Variations
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Figure 9.7: Yaw Rate Step Response for Cnβ Variations
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Figure 9.8: Root Locus for Cnβ Variations
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Figure 9.9: Yaw Rate Step Response for Cnp Variations
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Figure 9.10: Root Locus for Cnp Variations
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Figure 9.11: Yaw Rate Step Response for Cnr Variations
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Figure 9.12: Root Locus for Cnr Variations
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Figure 9.13: Roll Rate Step Response for Clβ Variations
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Figure 9.14: Root Locus for Clβ Variations
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Figure 9.15: Roll Rate Step Response for Clp Variations
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Figure 9.16: Root Locus for Clp Variations
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Figure 9.17: Pitch Rate Step Response for CT Variations

after trimming the aircraft. The results, in form of root locus and step response

are presented in figures (9.17) and (9.18).

9.4 Determination of Center of Gravity Location

The location of the center of gravity and the variations thereof will also drive

the aircraft performances and stability. At the time, the location of the center

of gravity was not known precisely and could still be changed. This study shows

the arguments in the determination of the final location for the center of gravity.

The influence of the cg location on the dynamics are analyzed through the

root locus of the longitudinal dynamics (fig.9.19). The nominal position was

71.8 in and was perturbed by ± 10 inches. The first remark is that the aircraft

longitudinal modes are quite different from the ”traditional” modes of a small

aircraft. The short period mode is faster and the phugoid very lightly damped.

Figure (9.20) shows the root locus is plotted for the same aircraft with its mass

increased by a factor of 10. This modified aircraft with the same geometry and

132



-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Longitudinal Eigenvalues

Figure 9.18: Root Locus for CT Variations
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Figure 9.19: Root Locus for cg Variation
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Figure 9.20: Root Locus of a 10 times Heavier Aircraft for cg Variation

aerodynamics is closer to ”traditional” small aircrafts. The pole location is also

more typical. A basic explanation for baseline pole location is therefore its light

weight.

The root locus can be used to determine the ”best” cg location. The criteria

are the amount of oscillation in the phugoid and short period which should be

minimized and the trade-off aircraft stability vs. agility. Finally the center of

gravity is chosen to be at 73.8 inches, for a static margin of 6%. The aero data

set in section 2.4 is generated at this location and constitutes the latest set.

134



CHAPTER 10

Pilot-in-the-Loop Simulation

The pilot-in-the-loop simulation where the R/C pilot forms the feedback loop

is now considered. The pilot is trained on the open loop aircraft using the real

time high fidelity non linear simulation with adequate graphics (SGI technology).

According to his comments on the overall maneuverability of the aircraft, two

feedback configurations are studied to improve piloting qualities.

The first improvement concerns the lateral motion: the spiral mode is unstable

which, added to the high yawing-rolling coupling makes the aircraft really sensitive

to heading commands, that is the aircraft has a tendency to enter a spin from

which the recovery is very slow. The baseline is already equipped with gyroscope

measuring yaw rate. The gyroscope can be modeled as a simple P-controller.

Different designs are studied to stabilize the spiral mode in section 10.1. The
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Figure 10.1: Spiral Mode Stabilizer Configuration

second improvement according to the pilot is to damp the phugoid. The aircraft

phugoid is very closed to the imaginary axis with a very small damping as shown

in fig (10.6). This makes the aircraft very sensitive in pitch. More precisely, the

very light and flexible structure of the craft requires a very small pitch angle for

landing. The oscillations in pitch due to the phugoid need therefore to be damped

for a softer landing. Using gyroscopic measurement, the pitch rate is fed back in

the system as studied in section 10.2.

10.1 Spiral Mode Stabilizer

The basic idea is to feed back yaw rate using gyroscopic measurement. The

hardware configuration on the aircraft also includes elements such as receivers,

actuators, V-tail mixer and electronic components such as summers and amplifiers,

so that the final system is presented in figure (10.1).

10.1.1 Model and Design Constraints

The transmitter (R/C) is programmed so as to give a direct rudder command

and a turn command as shown in figure (10.2). The former commands only the

rudder whereas the latter is linked to all surfaces, that is rudder and asymmetric
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Figure 10.2: R/C Transmitter Configuration

wing twist. In addition to the feedback configuration, some limitations apply to

different hardware elements as

Km is a mechanical gain on the wing twist actuators and is fixed to 2.6.

Krec is the receiver gain and can take continuous values ranging from 0.3 to 1.2.

Kgyro is the gyroscope gain. Nothing in particular restrains its value, however a

gain higher than 2 will be difficult to obtain physically.

Ks is the V-tail mixer gain and can take discrete values within the set {0; .5; .75; 1}.

The design should also satisfy the following criteria:

1. Stable spiral mode and stable dutch roll.

2. A turn radius of 200ft (safety range problem), which translates into a yaw

rate of 10◦/s at a dynamic pressure of 1.4psf and an altitude of 5,000ft.

3. A safety factor of 2 on the gain, which is equivalent to a gain margin of

3dB.
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10.1.2 Controller Design

The model for the plant is a linear model derived numerically from the non linear

simulation. The reference point is chosen to be at q̄ = 1.4psf, h = 5,000ft, γ = 0◦

and no wing twist. The closed loop transfer function is derived using state space

representation, as follows

ẋ = Ax+Bu (10.1a)

u =




δR

δA



 (10.1b)

x = [ v p r φ ψ ]T , (10.1c)

where A and B include the actuators model, δR is the rudder command and δA

the wing twist command. Using the bloc diagram on figure (10.1), the control u

can be expanded as

u =




Ks δRc +KsKrec rc −KsKgyro r

KmKrec rc −KmKgyro r





=




Ks

Km



 Krec rc −




Ks

Km



 Kgyro r +




Ks

0



 δRc. (10.2a)

The output vector y is defined as y = Cx = [0 0 1 0 0]x = r and

Ka =




Ks

Km



Krec ; Kb =




Ks

Km



Kgyro ; Kc =




Ks

0



 . (10.3)

Combining equations (10.1), (10.2) and (10.3), the closed loop transfer function

from rc to r is obtained as

Gcl = C (sI − Ã)−1 B̃, (10.4)
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where

Ã = A−BKbC

B̃ = BKa.

From a root locus point of view, in order to have the spiral mode moving

towards the stable left half plane, only positive feedback is possible. So, if the

feedback loop is u = −Kx, only negative values ofK apply. Let start with a mixer

gain of 0.5 and a receiver gain equal to the gyro gain of -0.2. The roots are shown

in fig 10.3 and satisfy the requirement of stability. Now consider the response

of the system to a 10◦/s step in yaw rate for 70 seconds. The criteria are the

time to 10◦/s yaw rate and the steady state error. If the former is reasonable,

the steady state error is too big. Another remark concerns the non minimum

phase zero behavior. The control surfaces are driven in the opposite direction,

requiring a fast drop-rise motion increasing with the receiver gain, the actuators

may not be able to do it. Also the transient response is faster with increased

receiver gain. The trade-off stands then between a good (fast) transient response

at the expense of visible non minimum phase zero behavior. Some configurations

are summarized in the following table.

From the above results, it is clear that the criterion on gain margin will never

be achieved, as well as the range limit on the receiver gain. The increase of the

V-tail mixer gain makes also the wing saturation in the opposite direction to

the command appear faster, limiting again the freedom on the receiver and gyro

gains. To conclude, the second configuration is the best compromise between fast

transient response, non minimum phase behavior and gain margin as shown in

figure (10.4). However, the steady state error is still important. This is the final

design since the hardware forbids us from using an integrator to reduce the error.
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Ks Krec Kgyro Gain Phase Time to Note

Margin (dB) Margin (dB) 10◦/s r (sec)

0.5 -0.05 -0.2 1.63 20.38 38

-0.08 20

-0.1 17 †
-0.15 -0.25 1.3 34.98 15 †

0.75 -0.2 -0.2 1.65 22.73 10 †
-0.3 5 ‡
-0.25 -0.25 1.32 35.95 5 ‡

1.0 -0.2 -0.2 1.69 24.76 12 †
-0.25 -0.2 5 ‡

†: fast drop/rise

‡: wing saturation in opposite direction

Table 10.1: Summary of Feedback Configurations for Spiral Mode Stabilizer
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Figure 10.3: Spiral Mode Stabilizer Root Locus for Starting Values
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Figure 10.4: Spiral Mode Stabilizer Root Locus for Final Values

After tests on the real simulation time simulation, the pilot felt comfortable

with the lateral response so that the feedback configuration is dropped.

10.2 Pitch Damper

The pitch damper configuration is simpler than the spiral mode stabilizer since

there is no mixer, as shown in figure (10.5). The parameters are the gyroscope

gain and the receiver gain. The root locus of longitudinal dynamics in figure (10.6)

is made for increment of 5 in the gyro gain, the receiver gain staying at 1.0. It

is now obvious that the phugoid mode is difficult to ”move” in order to get a

significant improvement in the damping. Now consider a step in pitch rate of 1◦/s

for 95 seconds. In order to smooth the highly oscillatory transient response, the

gyroscope gain need to be at least 2. This value is unreasonable, thus the lightly

damped oscillations cannot be avoided. However, an advantage of this feedback

is the infinite gain margin. The gain value is thus left to the appreciation of the

pilot. After several simulated landings, a gyroscope gain of 0.15 seems to give
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Figure 10.6: Pitch Damper Root Locus for Starting Values

satisfactory results. The dynamic response of the closed loop to a step input in

pitch rate is shown in figure (10.7).

After real flight tests, the gyroscope gain is dropped to 0.03.
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Figure 10.7: Pitch Damper Step Response for Final Values
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CHAPTER 11

Autonomous Aircraft Configuration

This chapter presents the guidance scheme for the medium/high altitude flight

tests in section 11.1, the derivation of a full state controller associated with a

Kalman filter in sections 11.2 to 11.4 and the use of Loop Transfer Recovery

procedure to insure a good overall robustness in section 11.5.

The guidance provides commands to reach way points and track dynamic

pressure and lift coefficient. Commands are altitude and heading angle for the

way points, angle of attack for tracking lift coefficient and forward velocity for

tracking dynamic pressure. Two motion modes are described: reaching a way

point and orbiting around a way point position to reach altitude. The controller

is composed of two parts. A simple P-controller is used for altitude command,

providing power setting and a LQ regulator for position and tracking, providing
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Figure 11.1: Heading Angles Definition for Way Point Guidance/Position

tail deflections and wing twists. Using the linear model of the aircraft, an optimal

full state feedback controller is derived from the Linear Quadratic Regulator

(LQR) theory. As no complete information is perfectly known, a Kalman filter

is estimating the state. The filter is also designed using the LQR theory for the

dual problem of the controller. Finally, to recover the robustness characteristics

of the full state feedback controller, a Loop Transfer Recovery (LTR) procedure

is applied.

11.1 Way Point Guidance

The guidance forms the outer loop of the system and thus includes only slowly

varying dynamics. It provides commands that the controller tries to satisfy

using the three longitudinal controls, throttle, symmetric tail and wing twist,

and the two lateral,asymmetric tail and wing twist. The scheme is designed to

meet external constraints such as safety range and internal constraints such as

structural limits.
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Longitudinal commands Lateral commands

- uc: forward velocity for q̄ tracking - ψc: heading angle for direction

- αc: angle of attack for CL tracking

- hc: altitude for climb/descent

Table 11.1: Summary of Guidance Commands

11.1.1 Guidance Scheme Design

Any UAV must stay, during the test flight and in case of termination, in a

certain range fixed by USAF [Mem94]. To satisfy this range constraint a possible

guidance design is to have the aircraft successively reached way points fixed in the

range. This scheme leads to commands in heading angle for direction and throttle

for climb. Structural limitations reflect in the tracking of dynamic pressure and

no-stall condition in the tracking of lift coefficient. The complete command set

is summarized in table 11.1.

11.1.2 Implementation of Tracking Commands

The dynamic pressure is defined by q̄ = 1
2ρ V

2, which contains fast dynamics

in the airspeed V . The slower longitudinal speed u replaces V as the tracked

variable as

uc =

√
2 q̄

ρ(h)
(11.1)

The commands then depends solely on altitude which is a slow dynamics. Similarly,

the angle of attack tracking command depends only on the stability derivatives

of the aircraft, which, in this case, are only the static values as

αc =
CL − CL0

CLα

(11.2)
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11.1.3 Way Point Guidance

A way point is defined by its position (X, Y,H) in the inertial frame. The heading

command ψc and the altitude command hc depend only on altitude, position and

heading angle which are slow dynamics. For each characteristic (X, Y,H) a zone

of sufficient proximity is defined as a cylinder centered on each way point where

the aircraft is considered to have reached the way point. Two different ”status”

of the aircraft can be defined as far as the guidance is concerned: 1. Reaching

way point altitude only (the aircraft is already in the planar proximity zone for

position)

2. Reaching way point position (and eventually altitude if not reached yet)

As an example, if the aircraft reaches the way point position but not the

altitude, it begins an orbit of defined radius around the way point until altitude

is reached. If there is no more way point, the aircraft orbits around the last one

encountered.

11.1.3.1 Reaching Way Point Position

The heading command is determined as

ψc = ψ + sat(∆ψ) (11.3a)

∆ψ = ψ − ψwp (11.3b)

where ψ is the aircraft heading angle and ψwp is the heading angle to the way

point as shown in figure (11.1), so that

ψwp = tan−1
(
Ywp − Y

Xwp − X

)

A saturation needs to be set on ∆ψ to avoid important changes in heading
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Figure 11.2: Heading Angles Definition for Way Point Guidance/Altitude

command. The maximum change allowed for ∆ψ is 30◦.

11.1.4 Orbiting

The heading command is stated as

ψc = ψ + sat(∆ψ) (11.4a)

∆ψ = ψ − ψwp + K ∆R (11.4b)

Now ∆ψ has an additional term to ensure the aircraft orbits on a fixed circle

around the way point. ∆R is the relative distance of the aircraft to the orbit

radius, the gain K drives this error to zero as shown in figure (11.2), so that

R =
√

(Xwp −X)2 + (Ywp − Y )2 (11.5a)

∆R =
Rorb − R

Rorb
(11.5b)
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h−hc>ǫ above the proximity region:

the engine is shut off (ps = 0).

h−hc<−ǫ below the proximity region:

the engine is at full power (ps = 1).

|h−hc|<ǫ in the proximity region:

the power setting is a linear function of ∆h.

h=hc desired altitude:

the power setting is at the trim value.

Table 11.2: Altitude Control Algorithm

11.1.5 Altitude

For each case, the altitude command is simply the altitude of the way point as

hc = H (11.6)

11.2 Proportional Controller for Altitude

The altitude error ∆h = h−hc generates a power setting value using a simple

controller gain K. Let ǫ define the zone of sufficient proximity from the way point

altitude. Then the controller generates power setting as shown in figure (11.3)

and summarized in table 11.2

11.3 Linear Quadratic Regulator

In this section the design of a full state feedback controller using the Linear

Quadratic Regulator theory [BH75, Che84] is derived. The controller design uses
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Power setting Psh K

Figure 11.3: Proportional Controller for Altitude

the linearized dynamics of the aircraft as

ẋ = Ax+Bu x0 given (11.7a)

y = Cx+Du (11.7b)

where the matrices A, B, C and D are time invariant. The reference is q̄ = 1.0psf,

h = 5, 000ft, γ = 0◦ and no wing twist. Figure 11.4 shows the equivalent transfer

function.

11.3.1 LQR Design

A full state feedback assumes perfect knowledge of all the states. The design

then consists in finding the gain matrix K, so that u = Kx.

The closed loop system is shown in figure (11.5) and described by

ẋ = Ax + Bwwt x0 given (11.8a)

y = Cx + Dwwt (11.8b)
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Longitudinal states Lateral states
∫
u − uc β

∫
α − αc p

u− uc r

α− αc φ

q ψ − ψc

θ δTail

δTail δWing

δWing βwind

αwind

Table 11.3: LQ Controller States

u = Kx (11.8c)

where wt represents all the input combined, that is commands from the guidance

and wind disturbance w and controller outputs u. A controllable state space is

chosen so that all the states and controls used in the LQ problem have zero state

equilibrium as shown in table 11.3

Vertical and Lateral wind gusts velocities (vg and wg) are approximated by

the same first order model.

ẇg = −p (wg − wN)

where p = 2.93 at 5,000 ft and wN is a white noise process with the statistics

defined in chapter 7.

The problem is stated in terms of the optimal control theory: considering a

dynamic system modeled as

ẋ = Ax + Bu (11.9)
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find the control u = K x which minimizes the quadratic performance criterion

J =
∫ ∞

0
(xT Q x + uT Ru) dt (11.10)

where the Q and R matrices represent weightings on the states and the controls.

The method for choosing Q and R is described in [BH75]. As a starting point,

each state and control is scaled by its maximum deviation. Since the control

surfaces all move about the same amount and in the same unit, R is a unit

matrix multiplied by a scalar. The final coefficients for Q and R are determined

by studying the transient response in terms of rise time, overshoot and settling

time: as an example, off diagonal terms in Q tend to reduce overshoot. These

terms are found by trial and error. The longitudinal Q and R are finally

Q =





11 −1 0 0 0 0 0 0 0

−1 41 0 0 0 0 0 0 0

0 0 0.0001 0 0 0 0 0 0

0 0 0 0.0001 0 0 0 0 0

0 0 0 0 0.0001 0 0 0 0

0 0 0 0 0 50 0 0 0

0 0 0 0 0 0 5 0 0

0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 1





(11.11)

R = 5 I2×2 (11.12)

The matrix R is only 2 × 2 since the longitudinal controls δT and δA) are

symmetric, yielding a simplified control vector u as

ū =






δTail(R) + δTail(L)

δWing(R) + δWing(L)





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The lateral weighting matrices are given as

Q =





0.025 0 0 0 0 0 0 0 0 0

0 0.0000025 0 0 0 0 0 0 0 0

0 0 0.0000025 0 0 0 0 0 0 0

0 0 0 0.025 0 0 0 0 0 0

0 0 0 0 0.125 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0.0000025





(11.13)

R = I4×4 (11.14)

The optimal control theory for linear systems associated with a quadratic cost

on infinite interval provides the feedback K as

K = −R−1 BT P (11.15)

where P is a solution to the Algebraic Ricatti Equation (ARE)

ATP + PA − PBR−1BTP + Q = 0 (11.16)
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By applying equation (11.16), the longitudinal gain matrix K is obtained as

KT =





−1.0666 1.0307

2.0847 1.9632

−3.6403 0.4573

0.0161 0.3459

67.8596 −9.8039

4.0550 −0.7673

−1.3857 0.1129

0.1129 −0.5051

−0.0267 −0.3205





(11.17)

and the lateral gain matrix as

KT =





0.3173 −0.3173 0.3121 −0.3121

1.6810 −1.6810 2.1818 −2.1818

20.7632 −20.7632 20.8918 −20.8918

0.7448 −0.7448 0.9380 −0.9380

0.2166 −0.2166 0.1249 −0.1249

−0.4571 0.0429 −0.0439 0.0439

0.0429 −0.4571 0.0439 −0.0439

−0.0439 0.0439 −0.4715 0.0572

0.0439 −0.0439 0.0572 −0.4715

−0.2828 0.2828 −0.2907 0.2907




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11.3.2 LQR Robustness Properties

The Linear Quadratic Regulator has been shown in [SA77] and [LSA81] to have

important robustness properties. In particular,

1. Gain margin = (-6 dB, ∞)

2. Phase margin = (-60◦, 60◦)

11.4 Estimation

In this section the use of a state estimator is justified and its design presented.

Similarly to the controller design the aircraft linearized dynamics in (11.7) are

used.

11.4.1 Necessity of State Estimation

The use of a full state feedback is in fact not realistic for at least three reasons:

1. The wing gust is not a known dynamic system, since it is forced by white

noise. Only its probabilistic characteristics, such as mean and variance, or

power spectral density are known.

2. All the states are not fed back since all of them are not measured directly.

As examples, no measurement for forward velocity or wind gust is available

and the wing and tail deflections have to first pass through the actuators

dynamics.

3. Finally, even the measurements are not perfect since they are corrupted

by sensor noise which is only known in terms of mean and power spectral

density.
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Therefore a Linear Quadratic Gaussian Regulator is needed. This regulator

reduces, by separation property, to the combination of an optimal Kalman Filter

and a LQ regulator [May79].

11.4.2 State Estimator Design

Let the linear dynamic system be modeled as

ẋ = Ax + Bu+Bww (11.18a)

y = Cx + Du+Dvv (11.18b)

where w is the unknown disturbance vector and v the sensor noise vector. If

combining the stochastic processes, equations (11.18) reduce to

ẋ = Ax + Bu+ B̃ω ω (11.19a)

y = Cx + Du+ D̃ω ω (11.19b)

with ω =




w

v



. Then B̃ωD̃ω T = 0 when w and v are uncorrolated and

D̃ω D̃ω T = I.

Let x̂ be the state estimate, where the states are summarized in table 11.4.

Then the Kalman Filter dynamics follows the system dynamics with the addition

of a residual as

˙̂x = A x̂ + Bu + F (y − C x̂) (11.20)

The residual is the error between the output measurement and the estimated

output. The estimation problem of finding the correct gain matrix F is the dual

of the optimal control problem when stated as follows: find the control vector a

that minimizes the performance index

J =
∫ ∞

0
(ζ
T
Q ζ + aT Ra) dt
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Longitudinal estimated states Lateral estimated states

û β̂

α̂ p̂

q̂ r̂

θ̂ φ̂

δ̂Tail(R + L) ψ̂

δ̂Wing(R + L) δ̂Tail(R), δ̂Tail(L)

α̂wg δ̂Wing(R), δ̂Wing(L)

β̂wg

Table 11.4: Estimator States

with

Q = BwBw T (11.21a)

R = DvDv T (11.21b)

subject to the dynamics

ζ̇ = AT ζ + CTa (11.22)

The gain matrix is then given by

F = −PCTR−1

where P is the solution to the Algebraic Ricatti Equation

AP + PAT − PCTR−1CP + Q = 0

11.5 Loop Transfer Recovery

In this section we shall explain the Loop Transfer Recovery procedure [DS81] and

its use.
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11.5.1 Necessity of Loop Transfer Recovery

When a state estimator is used, associated with a full state feedback controller,

the latter does not have the robustness characteristics we stated before. Indeed,

gain and phase margin can be anything.

The LQ filter was designed to produce the best estimate of the state, in terms

of statistics, based on knowledge of the process noise or wind disturbance and the

sensor noise. However, when these ’noises’ are treated as design parameters, a

filter structure can be formed so that the closed loop system dynamics approach

asymptotically the LQ regulator dynamics. Clearly, the robustness properties of

the LQR may be recovered.

11.5.2 Design

The process noise power spectral density W is now a design parameter. It is

shown in [DS81] that by choosing

W = BwW0B
w T + ρ2BBT

and letting ρ→ ∞, the filter gain matrix F has the asymptotic behavior

1

ρ
F → B W V −1/2

and the loop transfer function K̃(s) G(s) approaches the LQR transfer function

pointwise in the s-plane as:

lim
ρ→∞

K̃(s) G(s) = K (sI −A)−1B

where K̃ represents the LQR + filter transfer function as shown in figure (11.6).
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Figure 11.6: Linear Quadratic Gaussian Regulator

This procedure applies with some restrictions:

the system must be (C,A) observable and (A,B) controllable. The system must

also be minimum phase and there should be no fewer outputs than controls.

Figure (11.7) illustrates the LTR procedure applied to K̃. The parameter value

is chosen to be ρ = 0.5. the recovery is viewed using the singular values1.

1The singular values (sv) of a matrix A are by definition the eigenvalues of AA∗ where A∗

is the complex conjugate transpose of A. The recovery of robustness properties can be viewed
through the asymptotic convergence of the maximum singular value
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Figure 11.7: Loop Transfer Recovery: Maximum Singular Values
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CHAPTER 12

Closed Loop Results

In this part simulation results are presented. They were obtained in demonstrating

two kinds of flights. As expected, the previous developments represent a frozen

image of the simulation. Thus some of the results thereafter are not complete

with respect to all the features presented.

1. The solar powered climb to altitude results were shown in the feasibility

report of January 1996.

2. The way point guidance scheme validation was used to demonstrate flight

in moderate turbulence. The results were first presented at the preliminary

design review of March 1996 and were updated in May 1996.
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12.1 Solar Powered Orbiting Flight to Altitude

The feasibility of autonomous vehicle ascent from near sea level to above 65,000

feet is demonstrated in a high fidelity, six degree of freedom nonlinear simulation.

The aircraft model includes first order actuator dynamics and first order aerodynamic

coefficients, , a preliminary full-state feedback controller and a guidance law.

The operating environment model includes atmospheric turbulence and solar

incidence. The simulated flight path is a helix with a three mile radius. Simulation

results indicate that ascent to 65,000 feet from Dryden at the vernal equinox is

possible and requires 6.5 hours.

12.1.1 Configuration and Environment

12.1.1.1 Configuration

To minimize required control surface power in turbulence, a neutrally stable

configuration is selected for this study. The nominal weight is 134 lb. The

electric motor used for propulsion generates a maximum of 21
2 horsepower and

operates at 90 percent efficiency. The propeller efficiency is assumed to be 85

percent. The solar cells cover 90 percent of the 150ft2 wing planform area and

are assumed to be 12.5 percent efficient.

12.1.1.2 Environment

A standard atmosphere model is used for the troposphere and the stratosphere.

The atmospheric turbulence model is derived from Bryson’s second-order model

which is derived from a statistical turbulence description found in Mil Spec 8785

C. The model includes turbulence in the three aircraft axes.
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To derive the energy supplied by the solar panels, a solar incidence angle

is derived. First, a vector from the sun to the earth is projected onto the

direction normal to the plane tangent to the earth’s surface below the aircraft.

This transformation includes solar declination which depends on the time of

year, latitude and the solar hour which depends on the time of day. Next, a

transformation to the aircraft body axes is applied. One surprising conclusion

drawn from the simulation study is the strong dependence of the solar panel

output, hence the thrust, on the aircraft pitch angle.

12.1.2 Flight Control

The flight control design has four objectives. First, regulate the dynamic pressure

so as not to exceed a given safe limit. This is done by tracking a forward velocity

command provided by the ascent guidance. Second, regulate the lift coefficient

so as to avoid stall. This is done by tracking an angle of attack command also

provided by the ascent guidance. Third, climb as quickly as possible. This

is done by commanding maximum power setting during climb. Finally, for

lateral-directional control, track a heading angle rate command provided by the

ascent guidance. For now, all measurements are provided with no sensor noise.

The longitudinal controller design is a linear, full-state feedback regulator

where the state-space includes u and α, pitch rate q and pitch angle θ. Also,

for proportional-integral command tracking, the integrals of the tracking errors
∫
(u−uc) and

∫
(α−αc) are included where uc and αc are the commanded forward

velocity and angle of attack. Since there are two regulated quantities and the

motor is operated at the maximum power setting, both symmetric tail and aileron

deflections are used for direct lift to decouple u and α.

The lateral controller design is also a linear, full-state feedback regulator. The

164



design state-space includes the sideslip angle β, body axes roll and yaw rates p

and r, and the Euler bank angle φ and the Euler heading angle rate tracking

error ψ̇ − ψ̇c where ψ̇c is the commanded heading rate.

The linearized aircraft dynamics used for both controller designs are for the

flight condition at an altitude of 20,000 ft, a dynamic pressure of 1 psf. and flight

path angle of 1 deg. Only one nominal flight condition is used since preliminary

simulation results indicate that no gain scheduling is needed.

12.1.3 Ascent Guidance

As with the flight control, the ascent guidance decouples into two parts as

longitudinal and lateral guidance laws. The longitudinal guidance provides forward

velocity and angle of attack commands for the flight control.

u2
c =

2q̄

ρ(h)

αc =
C̄L − CL0

CLα

Here, q̄ is a desired constant dynamic pressure; ρ(h) is the ambient air density; C̄L

is a desired constant lift coefficient and CL0 and CLα are aerodynamic quantities

taken to be constants.

The lateral guidance provides an Euler heading angle rate command for a

helical climb.

ψ̇c = K
[
R−

√
x2 + y2

]

Here, K is a gain to be determined; R is the radius of the desired helical flight

path and x and y are the downrange coordinates.

To avoid interfering with the inner loop, the guidance law, or outer loop, uses

only the slowly varying positions as measurements. Longitudinal guidance uses
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only the altitude and lateral guidance uses inertial downrange coordinates.

12.1.4 Simulation Results

The simulated case is an ascent of eight hours from Dryden, 34◦ north latitude

in light wind conditions, beginning at 1,000 ft at 8:00 am. The helical path has

a radius of 15,000 ft, about three miles. The tracked dynamic pressure is q̄ = 1

and the tracked lift coefficient is C̄L = 1.1.
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The climb rate depends solely on the power collected by the solar panels.

Hence the daytime hour and the variations in the airplane attitude towards the

sun are strongly reflected in the airspeed, thrust and flight path angle.

In addition to these large scale oscillations, small perturbations due to wind gust

are superimposed.

Finally, tail and aileron deflections illustrate the control power required to fly the

helix.
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Figure 12.3: Airspeed vs. altitude
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Figure 12.5: Flight path angle vs. altitude
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Figure 12.6: Euler bank angle vs. altitude
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12.2 Way Point Flight in Moderate Turbulence

The simulation case is run with 5 ft
s standard deviation wind gust in the each of

the three directions.The way point guidance commands a trajectory whereby the

aircraft ascends 2500 ft. to the first way point, cruises to the second way point

and begins a helical descent to the third.
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12.2.1 Simulation Results

Wind gust histories for the longitudinal and normal directions are shown in

figures 12.12 and 12.13. The lateral wind gust is statistically the same as the

normal gust.
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Figure 12.12: Longitudinal Wind Gust: 5ft/s standard deviation.
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Figure 12.13: Vertical Wind Gust: 5ft/s standard deviation

Note that the total rms standard deviation is about 5
√

3 = 8 ft
s which is
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closer to being characteristic of moderate turbulence. Furthermore,8 ft
s total rms

is about 25% of the inertial airspeed. However, since the wind gust bandwidth

is much lower than the airplane closed-loop bandwidth, the airplane is able to

track angle of attack and forward velocity commands through the gust.

The tracked dynamic pressure is q̄ = 1 and the tracked lift coefficient is

C̄L = 1.1. Altitude and range plots are given in Figures 12.14 and 12.15.
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Figure 12.14: Way Points Trajectory: Altitude.

Figures 12.12 and 12.13 show wind gusts reaching 3σ values of 15 ft
s . With

gusts of this size, the wind induced angle of attack varies as much as 28◦ as shown

in Figure 12.16. This would be the aircraft angle of attack if the attitude were

fixed as would effectively be the case if the gust bandwidth were on the order of

or higher than the aircraft bandwidth. However, Figures 12.17 and 12.18 show

that the angle of attack is tracked within 1.5◦ and the dynamic pressure within

0.2 psf. Figure 12.19 shows that the aircraft wing loading does not exceed 0.2 g.

To be complete, figures 12.20 and 12.21 show the right tail and right wing

control surface histories.
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Figure 12.15: Way Points Trajectory: Range.
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Figure 12.16: Wind Induced Angle of Attack
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Figure 12.17: Angle of Attack History
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Figure 12.18: Dynamic Pressure History
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Figure 12.20: Right Tail Deflection History
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Figure 12.21: Right Wing Twist History

12.2.2 Conclusions

Simulation results indicate that in low speed flight, the flyer effectively tracks

angle of attack and dynamic pressure through wind gusts with standard deviation

as much as 25% of the aircraft inertial speed. This is possible because the wind

gust dynamics admitted by Bryson’s model [HB77] have a bandwidth much lower

than the closed-loop bandwidth of the airplane. Hence, in low speed flight, wind

gust bandwidth is relatively more important than the gust magnitude. Since the

low bandwidth wind gust bandwidth assumption is critical to successful flight, it

is suggested that the wind gust model be validated empirically.
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CHAPTER 13

Conclusions

The purpose of this research is to combine models for all the elements that

contributes to the high fidelity simulation of a lightly loaded flexible solar powered

autonomous aircraft. The approach is to recognize the relevance of internal

structural and aerodynamical parameters and external environmental factors.

First, the structure model accuracy originates from considering both a rigid and

elastic body. The nominal nonlinear equations of motion are obtained From the

rigid body . The elastic behavior of the craft appears in the form of corrections

to the aerodynamical data. The relative importance of these corrections states

without ambiguity the relevance of not neglecting elastic deformation. This

remark leads to the necessity of flutter analysis to determine safety parameters

on the structure. Aerodynamical precision is gained by computing nonlinear

stability derivatives. The first step is to correct the stability derivatives for

propulsion effect and dihedral effect. Visible modifications over the basic static
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values are obtained. Propulsion parameters are made relevant to the high fidelity

after the prototype taxi tests. Experimental data replace the momentum theory

results. Solar power remains theoretical to accommodate the long term available

technology. Exogenous factors mainly consist in the wind gusts, which may

damage the structure during its climb to high altitude. The wind gust model

reaches accuracy by combining the statistical requirements for the input random

process in [Ano80] with the three dimensional continuous dynamics in [HB77].

The high fidelity simulation dynamics are validated against an independently

derived linear model and a numerical linear model with success. The aerodynamics

are checked using an independently developed nonlinear simulation. The complete

and validated product provides a tool for pilot training before flight tests. Minor

corrections to the aircraft behavior are studied following and in correlation with

the pilot appreciation. Simulation tests lead to the abandon of a spiral mode

stabilizer and the implementation of a pitch damper. The long term autonomous

aircraft is equipped with an autopilot. The design of a way point guidance

combined with a Kalman filter and a linear quadratic regulator results in the

feasibility of high altitude climb. The performance of the regulator is attained

by using loop transfer recovery procedure. The guidance scheme robustness is

tested through the viability of flight in moderate turbulence.

Further research should be carried out to fully combine rigid and elastic

motion. The augmented system response to disturbances should then be fully

assessed. After the first successful flight tests in November 1996, aerodynamical

and propulsion data should be extracted to further improve the aircraft model.

The lessons learned from these flights would also lead to the redesign of the

prototype, prior step to the study of formation flight. The new long term

research path goes along improving the autopilot design to account for parameter
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uncertainty such as propulsion effect or structural dynamic deformations that can

affect the controls.
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APPENDIX A

International Standard Atmosphere

An International Standard Atmosphere (ISA) provides thermodynamic values

(Temperature, Pressure, Density) for any given altitude in the Troposphere (0

to 11 km) or in the lower and upper Stratosphere (11 to 20 km and from 20

to 25 km). Providing a value to the parameter translate gives the results for a

translated standard atmosphere. This parameter variation can be used for night

flight or for accurate values during take off and landing.

Hypotheses are:

• The Earth is non rotating, which is assumable since the airplane velocity is

quite low.

• The Earth is flat, which is valid for the same reason.
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• The gravity at sea level is an average value independent of the latitude.

Note: gravity is given as a function of altitude and its sea level average value.

Computations of the induced errors can be done and yield :

Non rotating Earth ǫ1 = 1.5 10−5.Va (m/s) ǫ1 = 0.0008

Flat Earth ǫ2 = 1.6 10−6.Va (m/s) ǫ2 = 0.0046

Average value of g0 ǫ3 = ±3 10−3 ǫ3 = 0.003

A.1 Temperature Laws

Troposphere has a temperature which varies linearly with respect to altitude.

The ground level value is approximately 288.15 Kelvin and the value at the

upper limit of the troposphere is around 216.65 K.

Stratosphere has a constant temperature from 11 km to 20 km of 216.65 K.

Then the temperature is increasing with altitude.

Troposphere From 0 to 36089 ft T = T00 +B1H with

B1 = −0.0035662
◦R
ft

Stratosphere I From 36,089 ft to 65,617 ft T = 216.65 K

Stratosphere II From 65,617 ft to 104,987 ft T = Tstrat1 +B2H with

B2 = 0.0054864
◦R
ft

By comparing the results given by the ISA and tables of thermodynamic

values for different seasons, we found an approximative error of 5 K. Hence an

additional error for discarding seasonal changes is of the order of 2%.
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A.2 Thermodynamic Laws

The equations used to compute the standard atmosphere are :

dP = −gρdH Laplace (A.1a)

P = ρrT Perfect Gas Law (A.1b)

With gravity depending on altitude as

g = g0
Rearth

Rearth +H

(A.1) can be integrated as:

Troposphere

P = P00

(
(Rearth +H)T00

(T00 − B1.H)Rearth

) g0Rearth
r(B1.Rearth+T00)

Stratosphere I

P = Pstrat1

(
Rearth +H

Rearth +Hstrat1

)−g0Rearth
rTstrat1

Stratosphere II

P = Pstrat2

(
(Rearth +H)(Tstrat2 +B2.Hstrat2)

(Rearth +Hstrat2)(Tstrat2 +B2.H)

) −g0Rearth
r(B2.Rearth+Tstrat2)

Finally, for all cases

ρ =
P

rT
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APPENDIX B

Description of Stochastic Processes

The following is a brief summary of the quantities needed to describe randomness.

B.0.1 Probability and Expectation

In the case of turbulent flow, the process has an infinite number of possible

outcomes. Let us measure each value of the lateral component of the flow velocity

v for a point in the turbulent flow at time ti. Let ei be the occurrence of the

measurement in the range vi − ∆v/2 ≤ v ≤ vi + ∆v/2, where vi and ∆v are

known. If ni is the number of time ei is realized and N the total number of

measurements, we have

p(vi) = lim
N→∞

lim
δv→0

ni
N

1

δv
(B.1)

p(vi) is the probability function for v. The probability distribution function Pv(vi)

is defined as
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Pv(vi) = prob[v ≤ vi] = lim
N→∞

i∑

j=1

nj
N

(B.2)

from equation (B.2, we can infer

p(vi) =
∂Pv(vi)

∂vi
; Pv(vi) =

∫ vi

0
p(ζ)dζ

Moreover, the range for wind speed is usually (−∞,∞), so for any random

variable X, the probability distribution function becomes

PX(X) =
∫ X

−∞
px(ζ)dζ

with PX(−∞) = 0 and PX(∞) = 1.

We can also define

Prob[X − ∆X/2 ≤ x ≤ X + ∆X/2] = PX(X + ∆X/2) − PX(X − ∆X/2)

=
∫ X+∆X/2

X−∆X/2
px(ζ)dζ

Hence, the expected value can be computed for any function g(X) as

E[g(X)] = lim
∆X→0

∞∑

i=−∞

g(xi) Prob[Xi − ∆X/2 ≤ xi ≤ Xi + ∆X/2]

=
∫ ∞

−∞
g(x)px(x)dx (B.3)

Two important expected values are the mean and the variance. They are defined

as

mX = E[X] =
∫ ∞

−∞
xpX(x)dx (B.4)

σX = E[(X −mX)2] =
∫ ∞

−∞
(x−mX)2pX(x)dx (B.5)

The previous definitions can be extended to simultaneous observations at

several points in the flow. We obtain the joint distribution function FX(x1, . . . , xn)
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as

Prob[X1 ≤ x1, . . . , xn ≤ Xn] =
∫ x1

−∞
. . .

∫ xn

−∞
px(x1, . . . , xn)dx1 . . . dxn

and the expectation as

E[g(x1, . . . , xn)] =
∫ ∞

−∞
. . .

∫ ∞

−∞
g(x1, . . . , xn)px(x1, . . . , xn)dx1 . . . dxn

The previous results can be extended to time history of a random variable.

in the following, stochastic will be a synonym for statistical.

B.0.2 Ensembles and Stochastic Processes

Stochastic Process: statistical phenomenon varying with time.

Ensemble: an ensemble of records is the set of all turbulence time histories

obtained under the same exterior conditions.

Hence the any component of the turbulent wind velocity can be viewed as a

stochastic process depending on both space and time, and indexed by a parameter

α locating the record in the ensemble.

f = f(x, t;α)

However, α is usually fixed, so that we are looking at only one record of the

process f = f(x, t). We shall introduce now useful notions, such as stationarity

and independence. In the following examples, the stochastic processes depend

only on temporal parameters.

Stationarity: a process f(t) is said to be stationary of order n, if it does not

depend on time but on time intervals, so that for any shift in time τ

pf(f(t1 + τ), . . . , f(tn + τ)) = pf (f(t1), . . . , f(tn))
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then for τ = −tn

pf (f(t1), . . . , f(tn)) = pf (f(t1 − tn), . . . , f(0))

Independence: a process f is said to be independent from another process g if

P (f ∩ g) = P (f)P (g) or E[fg] = E[f ]E[g]

The covariance or correlation function is by definition

R(t1, t2) = E[(f(t1) −m1)(f(t2) −m2)]

R(t1, t2) = E[f(t1)f(t2)] −m1m2

Hence, for stationary processes, R(t1, t2) becomes R(t1 − t2), so that the

covariance function vanishes for independent processes. However, in turbulent

flow, we can only assume that velocities are independent for points separated by

long intervals of time or distances.

It is important to estimate the correlation function because it gives information

on the sequencing of events. As an example, if R(·) is largely positive f(t1) will

tend to be in phase with f(t2); if R(·) is strongly negative f(t1) and f(t2) will be

opposite in phase and finally, if R(.) vanishes f(t1) and f(t2) will be 90◦ out of

phase.

B.0.3 Normal or Gaussian Distribution

Normal distributions have an important role in the study of stochastic processes

because they can represent the statistical properties of many random processes

and make all the calculations easier. However, normal distributions do not

accurately represent the structure of turbulence. They can only be used as

approximations in order to develop prototypes useful in studying the response
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of systems forced by turbulence.

The probability density function for a normally distributed random variables

X is given by

p(X) =
1√
2πσ

exp−1

2

(X −m)2

σ2

where σ2 is the variance andm the mean ofX. The moments µn = E[(X −m)n)]

are of interest, and for the gaussian distribution

µn =
1√
2πσ

∫ ∞

−∞
(x−m)n exp

[

−1

2

(x−m)2

σ2

]

dx

All odd moments vanish and it is easy to find a relation between the even

moments:

µ2n = 1.3 . . . (2n− 1)σ2n

Another useful feature of normal distribution is that the joint density function

depends only on the means, variances and correlation coefficient as

r12 =
R(t1, t2)

σ(t1)σ(t2)

It is thus necessary and sufficient for jointly normal random variables to be

independent that their correlation coefficient vanishes. In other words, if two

normally distributed random variables are uncorrelated, they are also independent.

Finally, a linear combination of jointly normal random variables has itself a

normal distribution. As a consequence, if a linear system is forced by a process

jointly normally distributed, the output is also gaussian. Now let us apply this

to a stochastic process: we say a stochastic process is normally distributed if, for

every integer n and every set {t1, . . . , tn}, x(t1), . . . , x(tn) have a joint normal

distribution.
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The problem with wind turbulence is that although the velocities have nearly

gaussian distributions, their derivatives do not. However, the derivatives are

linear combinations of x(t1) and x(t2) for small increments in (t1 − t2), thus

the joint distribution of (x(t1), x(t2)) is not normal and the velocities are not

representatives of gaussian processes.

B.0.4 Energy Spectra of Time Series

Let u(t) be a component of the observed wind velocity. The speed u can be

considered as the sum of a mean speed ū(t) and a gust component u′(t). We

assume that u(t) is a stationary process, so that its mean is constant and the

correlation function R(·, ·) depends only on the lag τ as

R(τ) = E[u′(t)u′(t+ τ)]

R(τ) ≤ σ2
u′ (Schwarz inequality)

R(0) represents twice the specific kinetic energy of u(t). Using the inverse Fourier

transform, we can relate R(·) to energy as

R(τ) =
1

2

∫ ∞

−∞
Φ(w)e−iwτdw (B.6a)

R(0) =
1

2

∫ ∞

−∞
Φ(w)dw (B.6b)

where Φ(w) shows the distribution of the turbulent kinetic energy. If we use the

fact that R(τ) is an even function, equations (B.6) reduce to

R(τ) =
1

2

∫ ∞

0
Φ(w)cos(wτ)dw

R(0) =
1

2

∫ ∞

0
Φ(w)dw

The quantity Φ(w)dw is the energy contribution made by harmonic oscillations

of frequency w. Using analogy with light, Φ(w) is called energy spectral density
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function.

From the assumption that
∫ ∞

0 |R(τ)|dτ < ∞, we can deduce that the spectral

density is bounded as

|Φ(w)| ≤ 2

π

∫ ∞

0
|R(τ)|dτ < ∞

and continuous as

|Φ(w + ǫ) − Φ(w)| =
2

π

∫ ∞

0
|R(τ)|| cos(w + ǫ)τ − coswτ |dτ

which is zero by dominated convergence theorem.

If observed data are considered, the records have always a finite length, so

that truncated functions are used as

uT (t) =






u′(t) |t| ≤ T

0 |t| > T

RT (τ) =






1
2T

∫ ∞
−∞ u′T (t)u′T (t+ τ)dt |τ | ≤ 2T

0 |τ | > 2T

ΦT (w) =
1

2πT

∣∣∣∣

∫ ∞

−∞
u′T (t)e−iwtdt

∣∣∣∣
2
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APPENDIX C

Project Team Members

Project Managers :

John Del Frate (NASA)

Jerry Miller (Rockwell)

Jason Speyer (UCLA)

UCLA team :

Randal Douglas single aircraft simulation

David Chichka formation flight and flight computer

Dale Cooper flight computer

Sinpyo Hong flight computer

Laurence Mutuel single aircraft simulation

Phyllis Nelson flight computer

Tony Rios GPS simulation and flight computer
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Walton Williamson flight computer

Jonathan Wolfe formation flight

Rockwell team :

David Bass simulation and structures

David Bose simulation

Barry Brown manufacturing

Darrel Dennell instrumentation and launch vehicle pilot

Steven Dobbs structures

Ken Dunn aerodynamics

Dan Ortega structures

Steven White R/C control and flight test engineer

and all personnel for taxi tests and flight tests

NASA :

Tony Frackowiak prototype R/C pilot
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